1 ;;; byte-optimize.el --- the optimization passes of the emacs-lisp byte compiler.
3 ;;; Copyright (c) 1991, 1994 Free Software Foundation, Inc.
5 ;; Authors: Jamie Zawinski <jwz@jwz.org>
6 ;; Hallvard Furuseth <hbf@ulrik.uio.no>
7 ;; Martin Buchholz <martin@xemacs.org>
10 ;; This file is part of XEmacs.
12 ;; XEmacs is free software; you can redistribute it and/or modify it
13 ;; under the terms of the GNU General Public License as published by
14 ;; the Free Software Foundation; either version 2, or (at your option)
17 ;; XEmacs is distributed in the hope that it will be useful, but
18 ;; WITHOUT ANY WARRANTY; without even the implied warranty of
19 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 ;; General Public License for more details.
22 ;; You should have received a copy of the GNU General Public License
23 ;; along with XEmacs; see the file COPYING. If not, write to the
24 ;; Free Software Foundation, Inc., 59 Temple Place - Suite 330,
25 ;; Boston, MA 02111-1307, USA.
27 ;;; Synched up with: FSF 20.7 except where marked.
28 ;;; [[ Synched up with: FSF 20.7. ]]
29 ;;; DO NOT PUT IN AN INVALID SYNC MESSAGE WHEN YOU DO A PARTIAL SYNC. --ben
31 ;; BEGIN SYNC WITH 20.7.
35 ;; ========================================================================
36 ;; "No matter how hard you try, you can't make a racehorse out of a pig.
37 ;; You can, however, make a faster pig."
39 ;; Or, to put it another way, the emacs byte compiler is a VW Bug. This code
40 ;; makes it be a VW Bug with fuel injection and a turbocharger... You're
41 ;; still not going to make it go faster than 70 mph, but it might be easier
47 ;; (apply #'(lambda (x &rest y) ...) 1 (foo))
49 ;; maintain a list of functions known not to access any global variables
50 ;; (actually, give them a 'dynamically-safe property) and then
51 ;; (let ( v1 v2 ... vM vN ) <...dynamically-safe...> ) ==>
52 ;; (let ( v1 v2 ... vM ) vN <...dynamically-safe...> )
53 ;; by recursing on this, we might be able to eliminate the entire let.
54 ;; However certain variables should never have their bindings optimized
55 ;; away, because they affect everything.
56 ;; (put 'debug-on-error 'binding-is-magic t)
57 ;; (put 'debug-on-abort 'binding-is-magic t)
58 ;; (put 'debug-on-next-call 'binding-is-magic t)
59 ;; (put 'mocklisp-arguments 'binding-is-magic t)
60 ;; (put 'inhibit-quit 'binding-is-magic t)
61 ;; (put 'quit-flag 'binding-is-magic t)
62 ;; (put 't 'binding-is-magic t)
63 ;; (put 'nil 'binding-is-magic t)
65 ;; (put 'gc-cons-threshold 'binding-is-magic t)
66 ;; (put 'track-mouse 'binding-is-magic t)
69 ;; Simple defsubsts often produce forms like
70 ;; (let ((v1 (f1)) (v2 (f2)) ...)
72 ;; It would be nice if we could optimize this to
74 ;; but we can't unless FN is dynamically-safe (it might be dynamically
75 ;; referring to the bindings that the lambda arglist established.)
76 ;; One of the uncountable lossages introduced by dynamic scope...
78 ;; Maybe there should be a control-structure that says "turn on
79 ;; fast-and-loose type-assumptive optimizations here." Then when
80 ;; we see a form like (car foo) we can from then on assume that
81 ;; the variable foo is of type cons, and optimize based on that.
82 ;; But, this won't win much because of (you guessed it) dynamic
83 ;; scope. Anything down the stack could change the value.
84 ;; (Another reason it doesn't work is that it is perfectly valid
85 ;; to call car with a null argument.) A better approach might
86 ;; be to allow type-specification of the form
87 ;; (put 'foo 'arg-types '(float (list integer) dynamic))
88 ;; (put 'foo 'result-type 'bool)
89 ;; It should be possible to have these types checked to a certain
92 ;; collapse common subexpressions
94 ;; It would be nice if redundant sequences could be factored out as well,
95 ;; when they are known to have no side-effects:
96 ;; (list (+ a b c) (+ a b c)) --> a b add c add dup list-2
97 ;; but beware of traps like
98 ;; (cons (list x y) (list x y))
100 ;; Tail-recursion elimination is not really possible in Emacs Lisp.
101 ;; Tail-recursion elimination is almost always impossible when all variables
102 ;; have dynamic scope, but given that the "return" byteop requires the
103 ;; binding stack to be empty (rather than emptying it itself), there can be
104 ;; no truly tail-recursive Emacs Lisp functions that take any arguments or
105 ;; make any bindings.
107 ;; Here is an example of an Emacs Lisp function which could safely be
108 ;; byte-compiled tail-recursively:
110 ;; (defun tail-map (fn list)
112 ;; (funcall fn (car list))
113 ;; (tail-map fn (cdr list)))))
115 ;; However, if there was even a single let-binding around the COND,
116 ;; it could not be byte-compiled, because there would be an "unbind"
117 ;; byte-op between the final "call" and "return." Adding a
118 ;; Bunbind_all byteop would fix this.
120 ;; (defun foo (x y z) ... (foo a b c))
121 ;; ... (const foo) (varref a) (varref b) (varref c) (call 3) END: (return)
122 ;; ... (varref a) (varbind x) (varref b) (varbind y) (varref c) (varbind z) (goto 0) END: (unbind-all) (return)
123 ;; ... (varref a) (varset x) (varref b) (varset y) (varref c) (varset z) (goto 0) END: (return)
125 ;; this also can be considered tail recursion:
127 ;; ... (const foo) (varref a) (call 1) (goto X) ... X: (return)
128 ;; could generalize this by doing the optimization
129 ;; (goto X) ... X: (return) --> (return)
131 ;; But this doesn't solve all of the problems: although by doing tail-
132 ;; recursion elimination in this way, the call-stack does not grow, the
133 ;; binding-stack would grow with each recursive step, and would eventually
134 ;; overflow. I don't believe there is any way around this without lexical
137 ;; Wouldn't it be nice if Emacs Lisp had lexical scope.
139 ;; Idea: the form (lexical-scope) in a file means that the file may be
140 ;; compiled lexically. This proclamation is file-local. Then, within
141 ;; that file, "let" would establish lexical bindings, and "let-dynamic"
142 ;; would do things the old way. (Or we could use CL "declare" forms.)
143 ;; We'd have to notice defvars and defconsts, since those variables should
144 ;; always be dynamic, and attempting to do a lexical binding of them
145 ;; should simply do a dynamic binding instead.
146 ;; But! We need to know about variables that were not necessarily defvarred
147 ;; in the file being compiled (doing a boundp check isn't good enough.)
148 ;; Fdefvar() would have to be modified to add something to the plist.
150 ;; A major disadvantage of this scheme is that the interpreter and compiler
151 ;; would have different semantics for files compiled with (dynamic-scope).
152 ;; Since this would be a file-local optimization, there would be no way to
153 ;; modify the interpreter to obey this (unless the loader was hacked
154 ;; in some grody way, but that's a really bad idea.)
156 ;; HA! RMS removed the following paragraph from his version of
159 ;; Really the Right Thing is to make lexical scope the default across
160 ;; the board, in the interpreter and compiler, and just FIX all of
161 ;; the code that relies on dynamic scope of non-defvarred variables.
163 ;; Other things to consider:
165 ;; Associative math should recognize subcalls to identical function:
166 ;;(disassemble #'(lambda (x) (+ (+ (foo) 1) (+ (bar) 2))))
167 ;; This should generate the same as (1+ x) and (1- x)
169 ;;(disassemble #'(lambda (x) (cons (+ x 1) (- x 1))))
170 ;; An awful lot of functions always return a non-nil value. If they're
171 ;; error free also they may act as true-constants.
173 ;;(disassemble #'(lambda (x) (and (point) (foo))))
175 ;; - all but one arguments to a function are constant
176 ;; - the non-constant argument is an if-expression (cond-expression?)
177 ;; then the outer function can be distributed. If the guarding
178 ;; condition is side-effect-free [assignment-free] then the other
179 ;; arguments may be any expressions. Since, however, the code size
180 ;; can increase this way they should be "simple". Compare:
182 ;;(disassemble #'(lambda (x) (eq (if (point) 'a 'b) 'c)))
183 ;;(disassemble #'(lambda (x) (if (point) (eq 'a 'c) (eq 'b 'c))))
185 ;; (car (cons A B)) -> (prog1 A B)
186 ;;(disassemble #'(lambda (x) (car (cons (foo) 42))))
188 ;; (cdr (cons A B)) -> (progn A B)
189 ;;(disassemble #'(lambda (x) (cdr (cons 42 (foo)))))
191 ;; (car (list A B ...)) -> (prog1 A ... B)
192 ;;(disassemble #'(lambda (x) (car (list (foo) 42 (bar)))))
194 ;; (cdr (list A B ...)) -> (progn A (list B ...))
195 ;;(disassemble #'(lambda (x) (cdr (list 42 (foo) (bar)))))
200 (require 'byte-compile "bytecomp")
202 (defun byte-compile-log-lap-1 (format &rest args)
203 (if (aref byte-code-vector 0)
204 (error "The old version of the disassembler is loaded. Reload new-bytecomp as well."))
206 (apply 'format format
210 (if (not (consp arg))
211 (if (and (symbolp arg)
212 (string-match "^byte-" (symbol-name arg)))
213 (intern (substring (symbol-name arg) 5))
215 (if (integerp (setq c (car arg)))
216 (error "non-symbolic byte-op %s" c))
219 (setq a (cond ((memq c byte-goto-ops)
220 (car (cdr (cdr arg))))
221 ((memq c byte-constref-ops)
224 (setq c (symbol-name c))
225 (if (string-match "^byte-." c)
226 (setq c (intern (substring c 5)))))
227 (if (eq c 'constant) (setq c 'const))
228 (if (and (eq (cdr arg) 0)
229 (not (memq c '(unbind call const))))
231 (format "(%s %s)" c a))))
234 (defmacro byte-compile-log-lap (format-string &rest args)
236 '(memq byte-optimize-log '(t byte))
237 (cons 'byte-compile-log-lap-1
238 (cons format-string args))))
241 ;;; byte-compile optimizers to support inlining
243 (put 'inline 'byte-optimizer 'byte-optimize-inline-handler)
245 (defun byte-optimize-inline-handler (form)
246 "byte-optimize-handler for the `inline' special-form."
251 (let ((fn (car-safe sexp)))
252 (if (and (symbolp fn)
253 (or (cdr (assq fn byte-compile-function-environment))
255 (not (or (cdr (assq fn byte-compile-macro-environment))
256 (and (consp (setq fn (symbol-function fn)))
257 (eq (car fn) 'macro))
259 (byte-compile-inline-expand sexp)
264 ;; Splice the given lap code into the current instruction stream.
265 ;; If it has any labels in it, you're responsible for making sure there
266 ;; are no collisions, and that byte-compile-tag-number is reasonable
267 ;; after this is spliced in. The provided list is destroyed.
268 (defun byte-inline-lapcode (lap)
269 (setq byte-compile-output (nconc (nreverse lap) byte-compile-output)))
272 (defun byte-compile-inline-expand (form)
273 (let* ((name (car form))
274 (fn (or (cdr (assq name byte-compile-function-environment))
275 (and (fboundp name) (symbol-function name)))))
278 (byte-compile-warn "attempt to inline %s before it was defined" name)
281 (if (and (consp fn) (eq (car fn) 'autoload))
284 (setq fn (or (cdr (assq name byte-compile-function-environment))
285 (and (fboundp name) (symbol-function name))))))
286 (if (and (consp fn) (eq (car fn) 'autoload))
287 (error "file \"%s\" didn't define \"%s\"" (nth 1 fn) name))
289 (byte-compile-inline-expand (cons fn (cdr form)))
290 (if (compiled-function-p fn)
293 (cons (list 'lambda (compiled-function-arglist fn)
295 (compiled-function-instructions fn)
296 (compiled-function-constants fn)
297 (compiled-function-stack-depth fn)))
299 (if (eq (car-safe fn) 'lambda)
301 ;; Give up on inlining.
304 ;;; ((lambda ...) ...)
306 (defun byte-compile-unfold-lambda (form &optional name)
307 (or name (setq name "anonymous lambda"))
308 (let ((lambda (car form))
310 (if (compiled-function-p lambda)
311 (setq lambda (list 'lambda (compiled-function-arglist lambda)
313 (compiled-function-instructions lambda)
314 (compiled-function-constants lambda)
315 (compiled-function-stack-depth lambda)))))
316 (let ((arglist (nth 1 lambda))
317 (body (cdr (cdr lambda)))
320 (if (and (stringp (car body)) (cdr body))
321 (setq body (cdr body)))
322 (if (and (consp (car body)) (eq 'interactive (car (car body))))
323 (setq body (cdr body)))
325 (cond ((eq (car arglist) '&optional)
326 ;; ok, I'll let this slide because funcall_lambda() does...
327 ;; (if optionalp (error "multiple &optional keywords in %s" name))
328 (if restp (error "&optional found after &rest in %s" name))
329 (if (null (cdr arglist))
330 (error "nothing after &optional in %s" name))
332 ((eq (car arglist) '&rest)
333 ;; ...but it is by no stretch of the imagination a reasonable
334 ;; thing that funcall_lambda() allows (&rest x y) and
335 ;; (&rest x &optional y) in arglists.
336 (if (null (cdr arglist))
337 (error "nothing after &rest in %s" name))
338 (if (cdr (cdr arglist))
339 (error "multiple vars after &rest in %s" name))
342 (setq bindings (cons (list (car arglist)
343 (and values (cons 'list values)))
346 ((and (not optionalp) (null values))
347 (byte-compile-warn "attempt to open-code %s with too few arguments" name)
348 (setq arglist nil values 'too-few))
350 (setq bindings (cons (list (car arglist) (car values))
352 values (cdr values))))
353 (setq arglist (cdr arglist)))
356 (or (eq values 'too-few)
358 "attempt to open-code %s with too many arguments" name))
360 ;; This line, introduced in v1.10, can cause an infinite
361 ;; recursion when inlining recursive defsubst's
362 ; (setq body (mapcar 'byte-optimize-form body))
365 (cons 'let (cons (nreverse bindings) body))
366 (cons 'progn body))))
367 (byte-compile-log " %s\t==>\t%s" form newform)
371 ;;; implementing source-level optimizers
373 (defun byte-optimize-form-code-walker (form for-effect)
375 ;; For normal function calls, We can just mapcar the optimizer the cdr. But
376 ;; we need to have special knowledge of the syntax of the special forms
377 ;; like let and defun (that's why they're special forms :-). (Actually,
378 ;; the important aspect is that they are subrs that don't evaluate all of
381 (let ((fn (car-safe form))
383 (cond ((not (consp form))
384 (if (not (and for-effect
385 (or byte-compile-delete-errors
391 (byte-compile-warn "malformed quote form: %s"
392 (prin1-to-string form)))
393 ;; map (quote nil) to nil to simplify optimizer logic.
394 ;; map quoted constants to nil if for-effect (just because).
398 ((or (compiled-function-p fn)
399 (eq 'lambda (car-safe fn)))
400 (byte-compile-unfold-lambda form))
401 ((memq fn '(let let*))
402 ;; recursively enter the optimizer for the bindings and body
403 ;; of a let or let*. This for depth-firstness: forms that
404 ;; are more deeply nested are optimized first.
409 (if (symbolp binding)
411 (if (cdr (cdr binding))
412 (byte-compile-warn "malformed let binding: %s"
413 (prin1-to-string binding)))
415 (byte-optimize-form (nth 1 binding) nil))))
417 (byte-optimize-body (cdr (cdr form)) for-effect))))
424 (byte-optimize-form (car clause) nil)
425 (byte-optimize-body (cdr clause) for-effect))
426 (byte-compile-warn "malformed cond form: %s"
427 (prin1-to-string clause))
431 ;; as an extra added bonus, this simplifies (progn <x>) --> <x>
434 (setq tmp (byte-optimize-body (cdr form) for-effect))
435 (if (cdr tmp) (cons 'progn tmp) (car tmp)))
436 (byte-optimize-form (nth 1 form) for-effect)))
440 (cons (byte-optimize-form (nth 1 form) for-effect)
441 (byte-optimize-body (cdr (cdr form)) t)))
442 (byte-optimize-form (nth 1 form) for-effect)))
445 (cons (byte-optimize-form (nth 1 form) t)
446 (cons (byte-optimize-form (nth 2 form) for-effect)
447 (byte-optimize-body (cdr (cdr (cdr form))) t)))))
449 ((memq fn '(save-excursion save-restriction save-current-buffer))
450 ;; those subrs which have an implicit progn; it's not quite good
451 ;; enough to treat these like normal function calls.
452 ;; This can turn (save-excursion ...) into (save-excursion) which
453 ;; will be optimized away in the lap-optimize pass.
454 (cons fn (byte-optimize-body (cdr form) for-effect)))
456 ((eq fn 'with-output-to-temp-buffer)
457 ;; this is just like the above, except for the first argument.
460 (byte-optimize-form (nth 1 form) nil)
461 (byte-optimize-body (cdr (cdr form)) for-effect))))
465 (cons (byte-optimize-form (nth 1 form) nil)
467 (byte-optimize-form (nth 2 form) for-effect)
468 (byte-optimize-body (nthcdr 3 form) for-effect)))))
470 ((memq fn '(and or)) ; remember, and/or are control structures.
471 ;; take forms off the back until we can't any more.
472 ;; In the future it could conceivably be a problem that the
473 ;; subexpressions of these forms are optimized in the reverse
474 ;; order, but it's ok for now.
476 (let ((backwards (reverse (cdr form))))
477 (while (and backwards
478 (null (setcar backwards
479 (byte-optimize-form (car backwards)
481 (setq backwards (cdr backwards)))
482 (if (and (cdr form) (null backwards))
484 " all subforms of %s called for effect; deleted" form))
486 ;; Now optimize the rest of the forms. We need the return
487 ;; values. We already did the car.
489 (mapcar 'byte-optimize-form (cdr backwards))))
490 (cons fn (nreverse backwards)))
491 (cons fn (mapcar 'byte-optimize-form (cdr form)))))
493 ((eq fn 'interactive)
494 (byte-compile-warn "misplaced interactive spec: %s"
495 (prin1-to-string form))
498 ((memq fn '(defun defmacro function
499 condition-case save-window-excursion))
500 ;; These forms are compiled as constants or by breaking out
501 ;; all the subexpressions and compiling them separately.
504 ((eq fn 'unwind-protect)
505 ;; the "protected" part of an unwind-protect is compiled (and thus
506 ;; optimized) as a top-level form, so don't do it here. But the
507 ;; non-protected part has the same for-effect status as the
508 ;; unwind-protect itself. (The protected part is always for effect,
509 ;; but that isn't handled properly yet.)
511 (cons (byte-optimize-form (nth 1 form) for-effect)
515 ;; the body of a catch is compiled (and thus optimized) as a
516 ;; top-level form, so don't do it here. The tag is never
517 ;; for-effect. The body should have the same for-effect status
518 ;; as the catch form itself, but that isn't handled properly yet.
520 (cons (byte-optimize-form (nth 1 form) nil)
523 ;; If optimization is on, this is the only place that macros are
524 ;; expanded. If optimization is off, then macroexpansion happens
525 ;; in byte-compile-form. Otherwise, the macros are already expanded
526 ;; by the time that is reached.
528 (setq form (macroexpand form
529 byte-compile-macro-environment))))
530 (byte-optimize-form form for-effect))
532 ;; Support compiler macros as in cl.el.
533 ((and (fboundp 'compiler-macroexpand)
534 (symbolp (car-safe form))
535 (get (car-safe form) 'cl-compiler-macro)
537 (setq form (compiler-macroexpand form)))))
538 (byte-optimize-form form for-effect))
541 (or (eq 'mocklisp (car-safe fn)) ; ha!
542 (byte-compile-warn "%s is a malformed function"
543 (prin1-to-string fn)))
546 ((and for-effect (setq tmp (get fn 'side-effect-free))
547 (or byte-compile-delete-errors
550 (byte-compile-warn "%s called for effect"
551 (prin1-to-string form))
553 (byte-compile-log " %s called for effect; deleted" fn)
554 ;; appending a nil here might not be necessary, but it can't hurt.
556 (cons 'progn (append (cdr form) '(nil))) t))
559 ;; Otherwise, no args can be considered to be for-effect,
560 ;; even if the called function is for-effect, because we
561 ;; don't know anything about that function.
562 (cons fn (mapcar 'byte-optimize-form (cdr form)))))))
565 (defun byte-optimize-form (form &optional for-effect)
566 "The source-level pass of the optimizer."
568 ;; First, optimize all sub-forms of this one.
569 (setq form (byte-optimize-form-code-walker form for-effect))
571 ;; After optimizing all subforms, optimize this form until it doesn't
572 ;; optimize any further. This means that some forms will be passed through
573 ;; the optimizer many times, but that's necessary to make the for-effect
574 ;; processing do as much as possible.
577 (if (and (consp form)
580 ;; we don't have any of these yet, but we might.
581 (setq opt (get (car form) 'byte-for-effect-optimizer)))
582 (setq opt (get (car form) 'byte-optimizer)))
583 (not (eq form (setq new (funcall opt form)))))
585 ;; (if (equal form new) (error "bogus optimizer -- %s" opt))
586 (byte-compile-log " %s\t==>\t%s" form new)
587 (setq new (byte-optimize-form new for-effect))
592 (defun byte-optimize-body (forms all-for-effect)
593 ;; Optimize the cdr of a progn or implicit progn; `forms' is a list of
594 ;; forms, all but the last of which are optimized with the assumption that
595 ;; they are being called for effect. The last is for-effect as well if
596 ;; all-for-effect is true. Returns a new list of forms.
601 (setq fe (or all-for-effect (cdr rest)))
602 (setq new (and (car rest) (byte-optimize-form (car rest) fe)))
603 (if (or new (not fe))
604 (setq result (cons new result)))
605 (setq rest (cdr rest)))
609 ;;; some source-level optimizers
611 ;;; when writing optimizers, be VERY careful that the optimizer returns
612 ;;; something not EQ to its argument if and ONLY if it has made a change.
613 ;;; This implies that you cannot simply destructively modify the list;
614 ;;; you must return something not EQ to it if you make an optimization.
616 ;;; It is now safe to optimize code such that it introduces new bindings.
618 ;; I'd like this to be a defsubst, but let's not be self-referential...
619 (defmacro byte-compile-trueconstp (form)
620 ;; Returns non-nil if FORM is a non-nil constant.
621 `(cond ((consp ,form) (eq (car ,form) 'quote))
622 ((not (symbolp ,form)))
626 ;; If the function is being called with constant numeric args,
627 ;; evaluate as much as possible at compile-time. This optimizer
628 ;; assumes that the function is associative, like + or *.
629 (defun byte-optimize-associative-math (form)
634 (if (numberp (car rest))
635 (setq constants (cons (car rest) constants))
636 (setq args (cons (car rest) args)))
637 (setq rest (cdr rest)))
641 (apply (car form) constants)
643 (cons (car form) (nreverse args))
645 (apply (car form) constants))
648 ;; If the function is being called with constant numeric args,
649 ;; evaluate as much as possible at compile-time. This optimizer
650 ;; assumes that the function satisfies
651 ;; (op x1 x2 ... xn) == (op ...(op (op x1 x2) x3) ...xn)
653 (defun byte-optimize-nonassociative-math (form)
654 (if (or (not (numberp (car (cdr form))))
655 (not (numberp (car (cdr (cdr form))))))
657 (let ((constant (car (cdr form)))
658 (rest (cdr (cdr form))))
659 (while (numberp (car rest))
660 (setq constant (funcall (car form) constant (car rest))
663 (cons (car form) (cons constant rest))
666 ;;(defun byte-optimize-associative-two-args-math (form)
667 ;; (setq form (byte-optimize-associative-math form))
669 ;; (byte-optimize-two-args-left form)
672 ;;(defun byte-optimize-nonassociative-two-args-math (form)
673 ;; (setq form (byte-optimize-nonassociative-math form))
675 ;; (byte-optimize-two-args-right form)
678 ;; jwz: (byte-optimize-approx-equal 0.0 0.0) was returning nil
679 ;; in xemacs 19.15 because it used < instead of <=.
680 (defun byte-optimize-approx-equal (x y)
681 (<= (* (abs (- x y)) 100) (abs (+ x y))))
683 ;; Collect all the constants from FORM, after the STARTth arg,
684 ;; and apply FUN to them to make one argument at the end.
685 ;; For functions that can handle floats, that optimization
686 ;; can be incorrect because reordering can cause an overflow
687 ;; that would otherwise be avoided by encountering an arg that is a float.
688 ;; We avoid this problem by (1) not moving float constants and
689 ;; (2) not moving anything if it would cause an overflow.
690 (defun byte-optimize-delay-constants-math (form start fun)
691 ;; Merge all FORM's constants from number START, call FUN on them
692 ;; and put the result at the end.
693 (let ((rest (nthcdr (1- start) form))
695 ;; t means we must check for overflow.
696 (overflow (memq fun '(+ *))))
697 (while (cdr (setq rest (cdr rest)))
698 (if (integerp (car rest))
700 (setq form (copy-sequence form)
701 rest (nthcdr (1- start) form))
702 (while (setq rest (cdr rest))
703 (cond ((integerp (car rest))
704 (setq constants (cons (car rest) constants))
706 ;; If necessary, check now for overflow
707 ;; that might be caused by reordering.
709 ;; We have overflow if the result of doing the arithmetic
710 ;; on floats is not even close to the result
711 ;; of doing it on integers.
712 (not (byte-optimize-approx-equal
713 (apply fun (mapcar 'float constants))
714 (float (apply fun constants)))))
716 (setq form (nconc (delq nil form)
717 (list (apply fun (nreverse constants)))))))))
720 ;; END SYNC WITH 20.7.
722 ;;; It is not safe to optimize calls to arithmetic ops with one arg
723 ;;; away entirely (actually, it would be safe if we know the sole arg
724 ;;; is not a marker or if it appears in other arithmetic).
726 ;;; But this degree of paranoia is normally unjustified, so optimize unless
727 ;;; the user has done (declaim (optimize (safety 3))). See bytecomp.el.
729 (defun byte-optimize-plus (form)
730 (byte-optimize-predicate (byte-optimize-delay-constants-math form 1 '+)))
732 (defun byte-optimize-multiply (form)
733 (setq form (byte-optimize-delay-constants-math form 1 '*))
734 ;; If there is a constant integer in FORM, it is now the last element.
736 (case (car (last form))
737 ;; (* x y 0) --> (progn x y 0)
738 (0 (cons 'progn (cdr form)))
739 (t (byte-optimize-predicate form))))
741 (defun byte-optimize-minus (form)
742 ;; Put constants at the end, except the first arg.
743 (setq form (byte-optimize-delay-constants-math form 2 '+))
744 ;; Now only the first and last args can be integers.
745 (let ((last (car (last (nthcdr 3 form)))))
747 ;; If form is (- CONST foo... CONST), merge first and last.
748 ((and (numberp (nth 1 form)) (numberp last))
749 (decf (nth 1 form) last)
758 (3 `(- ,(nth 2 form)))
759 ;; (- 0 x y ...) --> (- (- x) y ...)
760 (t `(- (- ,(nth 2 form)) ,@(nthcdr 3 form)))))
762 (t (byte-optimize-predicate form)))))
764 (defun byte-optimize-divide (form)
765 ;; Put constants at the end, except the first arg.
766 (setq form (byte-optimize-delay-constants-math form 2 '*))
767 ;; Now only the first and last args can be integers.
768 (let ((last (car (last (nthcdr 3 form)))))
770 ;; If form is (/ CONST foo... CONST), merge first and last.
771 ((and (numberp (nth 1 form)) (numberp last))
774 (cons (/ (nth 1 form) last)
775 (butlast (cdr (cdr form)))))
778 ;; (/ 0 x y) --> (progn x y 0)
780 (append '(progn) (cdr (cdr form)) '(0)))
782 ;; We don't have to check for divide-by-zero because `/' does.
783 (t (byte-optimize-predicate form)))))
785 ;; BEGIN SYNC WITH 20.7.
787 (defun byte-optimize-logmumble (form)
788 (setq form (byte-optimize-delay-constants-math form 1 (car form)))
789 (byte-optimize-predicate
791 (setq form (if (eq (car form) 'logand)
792 (cons 'progn (cdr form))
793 (delq 0 (copy-sequence form)))))
794 ((and (eq (car-safe form) 'logior)
796 (cons 'progn (cdr form)))
800 (defun byte-optimize-binary-predicate (form)
801 (if (byte-compile-constp (nth 1 form))
802 (if (byte-compile-constp (nth 2 form))
804 (list 'quote (eval form))
806 ;; This can enable some lapcode optimizations.
807 (list (car form) (nth 2 form) (nth 1 form)))
810 (defun byte-optimize-predicate (form)
814 (setq ok (byte-compile-constp (car rest))
818 (list 'quote (eval form))
820 (byte-compile-warn "evaluating %s: %s" form err)
824 (defun byte-optimize-identity (form)
825 (if (and (cdr form) (null (cdr (cdr form))))
827 (byte-compile-warn "identity called with %d arg%s, but requires 1"
829 (if (= 1 (length (cdr form))) "" "s"))
832 (defun byte-optimize-car (form)
833 (let ((arg (cadr form)))
835 ((and (byte-compile-trueconstp arg)
836 (not (and (consp arg)
837 (eq (car arg) 'quote)
838 (listp (cadr arg)))))
840 "taking car of a constant: %s" arg)
842 ((and (eq (car-safe arg) 'cons)
844 `(prog1 ,(nth 1 arg) ,(nth 2 arg)))
845 ((eq (car-safe arg) 'list)
846 `(prog1 ,@(cdr arg)))
848 (byte-optimize-predicate form)))))
850 (defun byte-optimize-cdr (form)
851 (let ((arg (cadr form)))
853 ((and (byte-compile-trueconstp arg)
854 (not (and (consp arg)
855 (eq (car arg) 'quote)
856 (listp (cadr arg)))))
858 "taking cdr of a constant: %s" arg)
860 ((and (eq (car-safe arg) 'cons)
862 `(progn ,(nth 1 arg) ,(nth 2 arg)))
863 ((eq (car-safe arg) 'list)
864 (if (> (length arg) 2)
865 `(progn ,(cadr arg) (list ,@(cddr arg)))
868 (byte-optimize-predicate form)))))
870 (put 'identity 'byte-optimizer 'byte-optimize-identity)
872 (put '+ 'byte-optimizer 'byte-optimize-plus)
873 (put '* 'byte-optimizer 'byte-optimize-multiply)
874 (put '- 'byte-optimizer 'byte-optimize-minus)
875 (put '/ 'byte-optimizer 'byte-optimize-divide)
876 (put '% 'byte-optimizer 'byte-optimize-predicate)
877 (put 'max 'byte-optimizer 'byte-optimize-associative-math)
878 (put 'min 'byte-optimizer 'byte-optimize-associative-math)
880 (put 'eq 'byte-optimizer 'byte-optimize-binary-predicate)
881 (put 'eql 'byte-optimizer 'byte-optimize-binary-predicate)
882 (put 'equal 'byte-optimizer 'byte-optimize-binary-predicate)
883 (put 'string= 'byte-optimizer 'byte-optimize-binary-predicate)
884 (put 'string-equal 'byte-optimizer 'byte-optimize-binary-predicate)
886 (put '= 'byte-optimizer 'byte-optimize-predicate)
887 (put '< 'byte-optimizer 'byte-optimize-predicate)
888 (put '> 'byte-optimizer 'byte-optimize-predicate)
889 (put '<= 'byte-optimizer 'byte-optimize-predicate)
890 (put '>= 'byte-optimizer 'byte-optimize-predicate)
891 (put '1+ 'byte-optimizer 'byte-optimize-predicate)
892 (put '1- 'byte-optimizer 'byte-optimize-predicate)
893 (put 'not 'byte-optimizer 'byte-optimize-predicate)
894 (put 'null 'byte-optimizer 'byte-optimize-predicate)
895 (put 'memq 'byte-optimizer 'byte-optimize-predicate)
896 (put 'consp 'byte-optimizer 'byte-optimize-predicate)
897 (put 'listp 'byte-optimizer 'byte-optimize-predicate)
898 (put 'symbolp 'byte-optimizer 'byte-optimize-predicate)
899 (put 'stringp 'byte-optimizer 'byte-optimize-predicate)
900 (put 'string< 'byte-optimizer 'byte-optimize-predicate)
901 (put 'string-lessp 'byte-optimizer 'byte-optimize-predicate)
902 (put 'length 'byte-optimizer 'byte-optimize-predicate)
904 (put 'logand 'byte-optimizer 'byte-optimize-logmumble)
905 (put 'logior 'byte-optimizer 'byte-optimize-logmumble)
906 (put 'logxor 'byte-optimizer 'byte-optimize-logmumble)
907 (put 'lognot 'byte-optimizer 'byte-optimize-predicate)
909 (put 'car 'byte-optimizer 'byte-optimize-car)
910 (put 'cdr 'byte-optimizer 'byte-optimize-cdr)
911 (put 'car-safe 'byte-optimizer 'byte-optimize-predicate)
912 (put 'cdr-safe 'byte-optimizer 'byte-optimize-predicate)
915 ;; I'm not convinced that this is necessary. Doesn't the optimizer loop
916 ;; take care of this? - Jamie
917 ;; I think this may some times be necessary to reduce eg. (quote 5) to 5,
918 ;; so arithmetic optimizers recognize the numeric constant. - Hallvard
919 (put 'quote 'byte-optimizer 'byte-optimize-quote)
920 (defun byte-optimize-quote (form)
921 (if (or (consp (nth 1 form))
922 (and (symbolp (nth 1 form))
924 (not (keywordp (nth 1 form)))
925 (not (memq (nth 1 form) '(nil t)))))
929 (defun byte-optimize-zerop (form)
930 (cond ((numberp (nth 1 form))
932 (byte-compile-delete-errors
933 (list '= (nth 1 form) 0))
936 (put 'zerop 'byte-optimizer 'byte-optimize-zerop)
938 (defun byte-optimize-and (form)
939 ;; Simplify if less than 2 args.
940 ;; if there is a literal nil in the args to `and', throw it and following
941 ;; forms away, and surround the `and' with (progn ... nil).
942 (cond ((null (cdr form)))
946 (prog1 (setq form (copy-sequence form))
948 (setq form (cdr form)))
951 ((null (cdr (cdr form)))
953 ((byte-optimize-predicate form))))
955 (defun byte-optimize-or (form)
956 ;; Throw away nil's, and simplify if less than 2 args.
957 ;; If there is a literal non-nil constant in the args to `or', throw away all
960 (setq form (delq nil (copy-sequence form))))
962 (while (cdr (setq rest (cdr rest)))
963 (if (byte-compile-trueconstp (car rest))
964 (setq form (copy-sequence form)
965 rest (setcdr (memq (car rest) form) nil))))
967 (byte-optimize-predicate form)
970 ;; END SYNC WITH 20.7.
972 ;;; For the byte optimizer, `cond' is just overly sweet syntactic sugar.
973 ;;; So we rewrite (cond ...) in terms of `if' and `or',
974 ;;; which are easier to optimize.
975 (defun byte-optimize-cond (form)
976 (byte-optimize-cond-1 (cdr form)))
978 (defun byte-optimize-cond-1 (clauses)
981 ((consp (car clauses))
983 (case (length (car clauses))
984 (1 `(or ,(nth 0 (car clauses))))
985 (2 `(if ,(nth 0 (car clauses)) ,(nth 1 (car clauses))))
986 (t `(if ,(nth 0 (car clauses)) (progn ,@(cdr (car clauses))))))
987 (when (cdr clauses) (list (byte-optimize-cond-1 (cdr clauses))))))
988 (t (error "malformed cond clause %s" (car clauses)))))
990 ;; BEGIN SYNC WITH 20.7.
992 (defun byte-optimize-if (form)
993 ;; (if <true-constant> <then> <else...>) ==> <then>
994 ;; (if <false-constant> <then> <else...>) ==> (progn <else...>)
995 ;; (if <test> nil <else...>) ==> (if (not <test>) (progn <else...>))
996 ;; (if <test> <then> nil) ==> (if <test> <then>)
997 (let ((clause (nth 1 form)))
998 (cond ((byte-compile-trueconstp clause)
1002 (cons 'progn (nthcdr 3 form))
1005 (if (equal '(nil) (nthcdr 3 form))
1006 (list 'if clause (nth 2 form))
1008 ((or (nth 3 form) (nthcdr 4 form))
1010 ;; Don't make a double negative;
1011 ;; instead, take away the one that is there.
1012 (if (and (consp clause) (memq (car clause) '(not null))
1013 (= (length clause) 2)) ; (not xxxx) or (not (xxxx))
1017 (cons 'progn (nthcdr 3 form))
1020 (list 'progn clause nil)))))
1022 (defun byte-optimize-while (form)
1026 (put 'and 'byte-optimizer 'byte-optimize-and)
1027 (put 'or 'byte-optimizer 'byte-optimize-or)
1028 (put 'cond 'byte-optimizer 'byte-optimize-cond)
1029 (put 'if 'byte-optimizer 'byte-optimize-if)
1030 (put 'while 'byte-optimizer 'byte-optimize-while)
1032 ;; The supply of bytecodes is small and constrained by backward compatibility.
1033 ;; Several functions have byte-coded versions and hence are very efficient.
1034 ;; Related functions which can be expressed in terms of the byte-coded
1035 ;; ones should be transformed into bytecoded calls for efficiency.
1036 ;; This is especially the case for functions with a backward- and
1037 ;; forward- version, but with a bytecode only for the forward one.
1039 ;; Some programmers have hand-optimized calls like (backward-char)
1040 ;; into the call (forward-char -1).
1041 ;; But it's so much nicer for the byte-compiler to do this automatically!
1043 ;; (char-before) ==> (char-after (1- (point)))
1044 (put 'char-before 'byte-optimizer 'byte-optimize-char-before)
1045 (defun byte-optimize-char-before (form)
1048 ((null (nth 1 form))
1050 ((equal '(point) (nth 1 form))
1052 (t `(1- (or ,(nth 1 form) (point)))))
1053 ,@(cdr (cdr form))))
1055 ;; (backward-char n) ==> (forward-char (- n))
1056 (put 'backward-char 'byte-optimizer 'byte-optimize-backward-char)
1057 (defun byte-optimize-backward-char (form)
1059 ,(typecase (nth 1 form)
1061 (integer (- (nth 1 form)))
1062 (t `(- (or ,(nth 1 form) 1))))
1063 ,@(cdr (cdr form))))
1065 ;; (backward-word n) ==> (forward-word (- n))
1066 (put 'backward-word 'byte-optimizer 'byte-optimize-backward-word)
1067 (defun byte-optimize-backward-word (form)
1069 ,(typecase (nth 1 form)
1071 (integer (- (nth 1 form)))
1072 (t `(- (or ,(nth 1 form) 1))))
1073 ,@(cdr (cdr form))))
1075 ;; The following would be a valid optimization of the above kind, but
1076 ;; the gain in performance is very small, since the saved funcall is
1077 ;; counterbalanced by the necessity of adding a bytecode for (point).
1079 ;; Also, users are more likely to have modified the behavior of
1080 ;; delete-char via advice or some similar mechanism. This is much
1081 ;; less of a problem for the previous functions because it wouldn't
1082 ;; make sense to modify the behaviour of `backward-char' without also
1083 ;; modifying `forward-char', for example.
1085 ;; (delete-char n) ==> (delete-region (point) (+ (point) n))
1086 ;; (put 'delete-char 'byte-optimizer 'byte-optimize-delete-char)
1087 ;; (defun byte-optimize-delete-char (form)
1088 ;; (case (length (cdr form))
1089 ;; (0 `(delete-region (point) (1+ (point))))
1090 ;; (1 `(delete-region (point) (+ (point) ,(nth 1 form))))
1093 ;; byte-compile-negation-optimizer lives in bytecomp.el
1094 ;(put '/= 'byte-optimizer 'byte-compile-negation-optimizer)
1095 (put 'atom 'byte-optimizer 'byte-compile-negation-optimizer)
1096 (put 'nlistp 'byte-optimizer 'byte-compile-negation-optimizer)
1098 (defun byte-optimize-funcall (form)
1099 ;; (funcall '(lambda ...) ...) ==> ((lambda ...) ...)
1100 ;; (funcall 'foo ...) ==> (foo ...)
1101 (let ((fn (nth 1 form)))
1102 (if (memq (car-safe fn) '(quote function))
1103 (cons (nth 1 fn) (cdr (cdr form)))
1106 (defun byte-optimize-apply (form)
1107 ;; If the last arg is a literal constant, turn this into a funcall.
1108 ;; The funcall optimizer can then transform (funcall 'foo ...) -> (foo ...).
1109 (let ((fn (nth 1 form))
1110 (last (nth (1- (length form)) form))) ; I think this really is fastest
1111 (or (if (or (null last)
1112 (eq (car-safe last) 'quote))
1113 (if (listp (nth 1 last))
1114 (let ((butlast (nreverse (cdr (reverse (cdr (cdr form)))))))
1115 (nconc (list 'funcall fn) butlast
1116 (mapcar #'(lambda (x) (list 'quote x)) (nth 1 last))))
1118 "last arg to apply can't be a literal atom: %s"
1119 (prin1-to-string last))
1123 (put 'funcall 'byte-optimizer 'byte-optimize-funcall)
1124 (put 'apply 'byte-optimizer 'byte-optimize-apply)
1127 (put 'let 'byte-optimizer 'byte-optimize-letX)
1128 (put 'let* 'byte-optimizer 'byte-optimize-letX)
1129 (defun byte-optimize-letX (form)
1130 (cond ((null (nth 1 form))
1132 (cons 'progn (cdr (cdr form))))
1133 ((or (nth 2 form) (nthcdr 3 form))
1136 ((eq (car form) 'let)
1137 (append '(progn) (mapcar 'car-safe (mapcar 'cdr-safe (nth 1 form)))
1140 (let ((binds (reverse (nth 1 form))))
1141 (list 'let* (reverse (cdr binds)) (nth 1 (car binds)) nil)))))
1144 (put 'nth 'byte-optimizer 'byte-optimize-nth)
1145 (defun byte-optimize-nth (form)
1146 (if (and (= (safe-length form) 3) (memq (nth 1 form) '(0 1)))
1147 (list 'car (if (zerop (nth 1 form))
1149 (list 'cdr (nth 2 form))))
1150 (byte-optimize-predicate form)))
1152 (put 'nthcdr 'byte-optimizer 'byte-optimize-nthcdr)
1153 (defun byte-optimize-nthcdr (form)
1154 (if (and (= (safe-length form) 3) (not (memq (nth 1 form) '(0 1 2))))
1155 (byte-optimize-predicate form)
1156 (let ((count (nth 1 form)))
1157 (setq form (nth 2 form))
1158 (while (>= (setq count (1- count)) 0)
1159 (setq form (list 'cdr form)))
1162 (put 'concat 'byte-optimizer 'byte-optimize-concat)
1163 (defun byte-optimize-concat (form)
1164 (let ((args (cdr form))
1166 (while (and args constant)
1167 (or (byte-compile-constp (car args))
1168 (setq constant nil))
1169 (setq args (cdr args)))
1174 ;;; enumerating those functions which need not be called if the returned
1175 ;;; value is not used. That is, something like
1176 ;;; (progn (list (something-with-side-effects) (yow))
1178 ;;; may safely be turned into
1179 ;;; (progn (progn (something-with-side-effects) (yow))
1181 ;;; Further optimizations will turn (progn (list 1 2 3) 'foo) into 'foo.
1183 ;;; I wonder if I missed any :-\)
1184 (let ((side-effect-free-fns
1185 '(% * + - / /= 1+ 1- < <= = > >= abs acos append aref ash asin atan
1187 boundp buffer-file-name buffer-local-variables buffer-modified-p
1189 capitalize car-less-than-car car cdr ceiling concat
1190 ;; coordinates-in-window-p not in XEmacs
1191 copy-marker cos count-lines
1192 default-boundp default-value documentation downcase
1193 elt exp expt fboundp featurep
1194 file-directory-p file-exists-p file-locked-p file-name-absolute-p
1195 file-newer-than-file-p file-readable-p file-symlink-p file-writable-p
1197 get get-buffer get-buffer-window getenv get-file-buffer
1198 ;; hash-table functions
1199 make-hash-table copy-hash-table
1202 hash-table-rehash-size
1203 hash-table-rehash-threshold
1209 length log log10 logand logb logior lognot logxor lsh
1210 marker-buffer max member memq min mod
1211 next-window nth nthcdr number-to-string
1212 parse-colon-path plist-get previous-window
1213 radians-to-degrees rassq regexp-quote reverse round
1214 sin sqrt string< string= string-equal string-lessp string-to-char
1215 string-to-int string-to-number substring symbol-plist
1216 tan upcase user-variable-p vconcat
1217 ;; XEmacs change: window-edges -> window-pixel-edges
1218 window-buffer window-dedicated-p window-pixel-edges window-height
1219 window-hscroll window-minibuffer-p window-width
1221 ;; functions defined by cl
1222 oddp evenp plusp minusp
1223 abs expt signum last butlast ldiff
1225 isqrt floor* ceiling* truncate* round* mod* rem* subseq
1228 (side-effect-and-error-free-fns
1230 bobp bolp buffer-end buffer-list buffer-size buffer-string bufferp
1231 car-safe case-table-p cdr-safe char-or-string-p char-table-p
1232 characterp commandp cons
1233 consolep console-live-p consp
1235 ;; XEmacs: extent functions, frame-live-p, various other stuff
1236 devicep device-live-p
1237 dot dot-marker eobp eolp eq eql equal eventp extentp
1238 extent-live-p floatp framep frame-live-p
1239 get-largest-window get-lru-window
1241 identity ignore integerp integer-or-marker-p interactive-p
1242 invocation-directory invocation-name
1244 make-marker mark mark-marker markerp memory-limit minibuffer-window
1245 ;; mouse-movement-p not in XEmacs
1246 natnump nlistp not null number-or-marker-p numberp
1247 one-window-p ;; overlayp not in XEmacs
1248 point point-marker point-min point-max processp
1250 selected-window sequencep stringp subrp symbolp syntax-table-p
1251 user-full-name user-login-name user-original-login-name
1252 user-real-login-name user-real-uid user-uid
1254 window-configuration-p window-live-p windowp
1255 ;; Functions defined by cl
1256 eql floatp-safe list* subst acons equalp random-state-p
1259 (dolist (fn side-effect-free-fns)
1260 (put fn 'side-effect-free t))
1261 (dolist (fn side-effect-and-error-free-fns)
1262 (put fn 'side-effect-free 'error-free)))
1265 (defun byte-compile-splice-in-already-compiled-code (form)
1266 ;; form is (byte-code "..." [...] n)
1267 (if (not (memq byte-optimize '(t byte)))
1268 (byte-compile-normal-call form)
1269 (byte-inline-lapcode
1270 (byte-decompile-bytecode-1 (nth 1 form) (nth 2 form) t))
1271 (setq byte-compile-maxdepth (max (+ byte-compile-depth (nth 3 form))
1272 byte-compile-maxdepth))
1273 (setq byte-compile-depth (1+ byte-compile-depth))))
1275 (put 'byte-code 'byte-compile 'byte-compile-splice-in-already-compiled-code)
1278 (defconst byte-constref-ops
1279 '(byte-constant byte-constant2 byte-varref byte-varset byte-varbind))
1281 ;;; This function extracts the bitfields from variable-length opcodes.
1282 ;;; Originally defined in disass.el (which no longer uses it.)
1284 (defun disassemble-offset ()
1286 ;; fetch and return the offset for the current opcode.
1287 ;; return NIL if this opcode has no offset
1288 ;; OP, PTR and BYTES are used and set dynamically
1289 (declare (special op ptr bytes))
1290 (cond ((< op byte-nth)
1291 (let ((tem (logand op 7)))
1292 (setq op (logand op 248))
1294 (setq ptr (1+ ptr)) ;offset in next byte
1295 ;; char-to-int to avoid downstream problems
1296 ;; caused by chars appearing where ints are
1297 ;; expected. In bytecode the bytes in the
1298 ;; opcode string are always interpreted as ints.
1299 (char-to-int (aref bytes ptr)))
1301 (setq ptr (1+ ptr)) ;offset in next 2 bytes
1303 (progn (setq ptr (1+ ptr))
1304 (lsh (aref bytes ptr) 8))))
1305 (t tem)))) ;offset was in opcode
1306 ((>= op byte-constant)
1307 (prog1 (- op byte-constant) ;offset in opcode
1308 (setq op byte-constant)))
1309 ((and (>= op byte-constant2)
1310 (<= op byte-goto-if-not-nil-else-pop))
1311 (setq ptr (1+ ptr)) ;offset in next 2 bytes
1313 (progn (setq ptr (1+ ptr))
1314 (lsh (aref bytes ptr) 8))))
1315 ;; XEmacs: this code was here before. FSF's first comparison
1316 ;; is (>= op byte-listN). It appears that the rel-goto stuff
1317 ;; does not exist in FSF 19.30. It doesn't exist in 19.28
1318 ;; either, so I'm going to assume that this is an improvement
1319 ;; on our part and leave it in. --ben
1320 ((and (>= op byte-rel-goto)
1321 (<= op byte-insertN))
1322 (setq ptr (1+ ptr)) ;offset in next byte
1323 ;; Use char-to-int to avoid downstream problems caused by
1324 ;; chars appearing where ints are expected. In bytecode
1325 ;; the bytes in the opcode string are always interpreted as
1327 (char-to-int (aref bytes ptr)))))
1330 ;;; This de-compiler is used for inline expansion of compiled functions,
1331 ;;; and by the disassembler.
1333 ;;; This list contains numbers, which are pc values,
1334 ;;; before each instruction.
1335 (defun byte-decompile-bytecode (bytes constvec)
1336 "Turns BYTECODE into lapcode, referring to CONSTVEC."
1337 (let ((byte-compile-constants nil)
1338 (byte-compile-variables nil)
1339 (byte-compile-tag-number 0))
1340 (byte-decompile-bytecode-1 bytes constvec)))
1342 ;; As byte-decompile-bytecode, but updates
1343 ;; byte-compile-{constants, variables, tag-number}.
1344 ;; If MAKE-SPLICEABLE is true, then `return' opcodes are replaced
1345 ;; with `goto's destined for the end of the code.
1346 ;; That is for use by the compiler.
1347 ;; If MAKE-SPLICEABLE is nil, we are being called for the disassembler.
1348 ;; In that case, we put a pc value into the list
1349 ;; before each insn (or its label).
1350 (defun byte-decompile-bytecode-1 (bytes constvec &optional make-spliceable)
1351 (let ((length (length bytes))
1352 (ptr 0) optr tags op offset
1356 ;; (retcount 0) unused
1358 (while (not (= ptr length))
1360 (setq lap (cons ptr lap)))
1361 (setq op (aref bytes ptr)
1363 offset (disassemble-offset)) ; this does dynamic-scope magic
1364 (setq op (aref byte-code-vector op))
1365 ;; XEmacs: the next line in FSF 19.30 reads
1366 ;; (cond ((memq op byte-goto-ops)
1367 ;; see the comment above about byte-rel-goto in XEmacs.
1368 (cond ((or (memq op byte-goto-ops)
1369 (cond ((memq op byte-rel-goto-ops)
1370 (setq op (aref byte-code-vector
1371 (- (symbol-value op)
1372 (- byte-rel-goto byte-goto))))
1373 (setq offset (+ ptr (- offset 127)))
1377 (cdr (or (assq offset tags)
1380 (byte-compile-make-tag))
1382 ((cond ((eq op 'byte-constant2) (setq op 'byte-constant) t)
1383 ((memq op byte-constref-ops)))
1384 (setq tmp (if (>= offset (length constvec))
1385 (list 'out-of-range offset)
1386 (aref constvec offset))
1387 offset (if (eq op 'byte-constant)
1388 (byte-compile-get-constant tmp)
1389 (or (assq tmp byte-compile-variables)
1390 (car (setq byte-compile-variables
1392 byte-compile-variables)))))))
1393 ((and make-spliceable
1394 (eq op 'byte-return))
1395 (if (= ptr (1- length))
1397 (setq offset (or endtag (setq endtag (byte-compile-make-tag)))
1399 ;; lap = ( [ (pc . (op . arg)) ]* )
1400 (setq lap (cons (cons optr (cons op (or offset 0)))
1402 (setq ptr (1+ ptr)))
1403 ;; take off the dummy nil op that we replaced a trailing "return" with.
1406 (cond ((numberp (car rest)))
1407 ((setq tmp (assq (car (car rest)) tags))
1408 ;; this addr is jumped to
1409 (setcdr rest (cons (cons nil (cdr tmp))
1411 (setq tags (delq tmp tags))
1412 (setq rest (cdr rest))))
1413 (setq rest (cdr rest))))
1414 (if tags (error "optimizer error: missed tags %s" tags))
1415 (if (null (car (cdr (car lap))))
1416 (setq lap (cdr lap)))
1418 (setq lap (cons (cons nil endtag) lap)))
1419 ;; remove addrs, lap = ( [ (op . arg) | (TAG tagno) ]* )
1420 (mapcar #'(lambda (elt) (if (numberp elt) elt (cdr elt)))
1424 ;;; peephole optimizer
1426 (defconst byte-tagref-ops (cons 'TAG byte-goto-ops))
1428 (defconst byte-conditional-ops
1429 '(byte-goto-if-nil byte-goto-if-not-nil byte-goto-if-nil-else-pop
1430 byte-goto-if-not-nil-else-pop))
1432 (defconst byte-after-unbind-ops
1433 '(byte-constant byte-dup
1434 byte-symbolp byte-consp byte-stringp byte-listp byte-numberp byte-integerp
1436 byte-cons byte-list1 byte-list2 ; byte-list3 byte-list4
1438 ;; How about other side-effect-free-ops? Is it safe to move an
1439 ;; error invocation (such as from nth) out of an unwind-protect?
1440 ;; No, it is not, because the unwind-protect forms can alter
1441 ;; the inside of the object to which nth would apply.
1442 ;; For the same reason, byte-equal was deleted from this list.
1443 "Byte-codes that can be moved past an unbind.")
1445 (defconst byte-compile-side-effect-and-error-free-ops
1446 '(byte-constant byte-dup byte-symbolp byte-consp byte-stringp byte-listp
1447 byte-integerp byte-numberp byte-eq byte-equal byte-not byte-car-safe
1448 byte-cdr-safe byte-cons byte-list1 byte-list2 byte-point byte-point-max
1449 byte-point-min byte-following-char byte-preceding-char
1450 byte-current-column byte-eolp byte-eobp byte-bolp byte-bobp
1451 byte-current-buffer byte-interactive-p))
1453 (defconst byte-compile-side-effect-free-ops
1455 '(byte-varref byte-nth byte-memq byte-car byte-cdr byte-length byte-aref
1456 byte-symbol-value byte-get byte-concat2 byte-concat3 byte-sub1 byte-add1
1457 byte-eqlsign byte-gtr byte-lss byte-leq byte-geq byte-diff byte-negate
1458 byte-plus byte-max byte-min byte-mult byte-char-after byte-char-syntax
1459 byte-buffer-substring byte-string= byte-string< byte-nthcdr byte-elt
1460 byte-member byte-assq byte-quo byte-rem)
1461 byte-compile-side-effect-and-error-free-ops))
1463 ;;; This piece of shit is because of the way DEFVAR_BOOL() variables work.
1464 ;;; Consider the code
1466 ;;; (defun foo (flag)
1467 ;;; (let ((old-pop-ups pop-up-windows)
1468 ;;; (pop-up-windows flag))
1469 ;;; (cond ((not (eq pop-up-windows old-pop-ups))
1470 ;;; (setq old-pop-ups pop-up-windows)
1473 ;;; Uncompiled, old-pop-ups will always be set to nil or t, even if FLAG is
1474 ;;; something else. But if we optimize
1477 ;;; varbind pop-up-windows
1478 ;;; varref pop-up-windows
1483 ;;; varbind pop-up-windows
1486 ;;; we break the program, because it will appear that pop-up-windows and
1487 ;;; old-pop-ups are not EQ when really they are. So we have to know what
1488 ;;; the BOOL variables are, and not perform this optimization on them.
1491 ;;; This used to hold a large list of boolean variables, which had to
1492 ;;; be updated every time a new DEFVAR_BOOL is added, making it very
1493 ;;; hard to maintain. Such a list is not necessary under XEmacs,
1494 ;;; where we can use `built-in-variable-type' to query for boolean
1497 ;(defconst byte-boolean-vars
1500 (defun byte-optimize-lapcode (lap &optional for-effect)
1501 "Simple peephole optimizer. LAP is both modified and returned."
1506 (keep-going 'first-time)
1509 (side-effect-free (if byte-compile-delete-errors
1510 byte-compile-side-effect-free-ops
1511 byte-compile-side-effect-and-error-free-ops)))
1513 (or (eq keep-going 'first-time)
1514 (byte-compile-log-lap " ---- next pass"))
1518 (setq lap0 (car rest)
1522 ;; You may notice that sequences like "dup varset discard" are
1523 ;; optimized but sequences like "dup varset TAG1: discard" are not.
1524 ;; You may be tempted to change this; resist that temptation.
1526 ;; <side-effect-free> pop --> <deleted>
1528 ;; const-X pop --> <deleted>
1529 ;; varref-X pop --> <deleted>
1530 ;; dup pop --> <deleted>
1532 ((and (eq 'byte-discard (car lap1))
1533 (memq (car lap0) side-effect-free))
1535 (setq tmp (aref byte-stack+-info (symbol-value (car lap0))))
1536 (setq rest (cdr rest))
1538 (byte-compile-log-lap
1539 " %s discard\t-->\t<deleted>" lap0)
1540 (setq lap (delq lap0 (delq lap1 lap))))
1542 (byte-compile-log-lap
1543 " %s discard\t-->\t<deleted> discard" lap0)
1544 (setq lap (delq lap0 lap)))
1546 (byte-compile-log-lap
1547 " %s discard\t-->\tdiscard discard" lap0)
1548 (setcar lap0 'byte-discard)
1550 ((error "Optimizer error: too much on the stack"))))
1552 ;; goto*-X X: --> X:
1554 ((and (memq (car lap0) byte-goto-ops)
1555 (eq (cdr lap0) lap1))
1556 (cond ((eq (car lap0) 'byte-goto)
1557 (setq lap (delq lap0 lap))
1558 (setq tmp "<deleted>"))
1559 ((memq (car lap0) byte-goto-always-pop-ops)
1560 (setcar lap0 (setq tmp 'byte-discard))
1562 ((error "Depth conflict at tag %d" (nth 2 lap0))))
1563 (and (memq byte-optimize-log '(t byte))
1564 (byte-compile-log " (goto %s) %s:\t-->\t%s %s:"
1565 (nth 1 lap1) (nth 1 lap1)
1567 (setq keep-going t))
1569 ;; varset-X varref-X --> dup varset-X
1570 ;; varbind-X varref-X --> dup varbind-X
1571 ;; const/dup varset-X varref-X --> const/dup varset-X const/dup
1572 ;; const/dup varbind-X varref-X --> const/dup varbind-X const/dup
1573 ;; The latter two can enable other optimizations.
1575 ((and (eq 'byte-varref (car lap2))
1576 (eq (cdr lap1) (cdr lap2))
1577 (memq (car lap1) '(byte-varset byte-varbind)))
1578 (if (and (setq tmp (eq (built-in-variable-type (car (cdr lap2)))
1580 (not (eq (car lap0) 'byte-constant)))
1583 (if (memq (car lap0) '(byte-constant byte-dup))
1585 (setq tmp (if (or (not tmp)
1586 (memq (car (cdr lap0)) '(nil t)))
1588 (byte-compile-get-constant t)))
1589 (byte-compile-log-lap " %s %s %s\t-->\t%s %s %s"
1590 lap0 lap1 lap2 lap0 lap1
1591 (cons (car lap0) tmp))
1592 (setcar lap2 (car lap0))
1594 (byte-compile-log-lap " %s %s\t-->\tdup %s" lap1 lap2 lap1)
1595 (setcar lap2 (car lap1))
1596 (setcar lap1 'byte-dup)
1598 ;; The stack depth gets locally increased, so we will
1599 ;; increase maxdepth in case depth = maxdepth here.
1600 ;; This can cause the third argument to byte-code to
1601 ;; be larger than necessary.
1602 (setq add-depth 1))))
1604 ;; dup varset-X discard --> varset-X
1605 ;; dup varbind-X discard --> varbind-X
1606 ;; (the varbind variant can emerge from other optimizations)
1608 ((and (eq 'byte-dup (car lap0))
1609 (eq 'byte-discard (car lap2))
1610 (memq (car lap1) '(byte-varset byte-varbind)))
1611 (byte-compile-log-lap " dup %s discard\t-->\t%s" lap1 lap1)
1614 (setq lap (delq lap0 (delq lap2 lap))))
1616 ;; not goto-X-if-nil --> goto-X-if-non-nil
1617 ;; not goto-X-if-non-nil --> goto-X-if-nil
1619 ;; it is wrong to do the same thing for the -else-pop variants.
1621 ((and (eq 'byte-not (car lap0))
1622 (or (eq 'byte-goto-if-nil (car lap1))
1623 (eq 'byte-goto-if-not-nil (car lap1))))
1624 (byte-compile-log-lap " not %s\t-->\t%s"
1627 (if (eq (car lap1) 'byte-goto-if-nil)
1628 'byte-goto-if-not-nil
1631 (setcar lap1 (if (eq (car lap1) 'byte-goto-if-nil)
1632 'byte-goto-if-not-nil
1634 (setq lap (delq lap0 lap))
1635 (setq keep-going t))
1637 ;; goto-X-if-nil goto-Y X: --> goto-Y-if-non-nil X:
1638 ;; goto-X-if-non-nil goto-Y X: --> goto-Y-if-nil X:
1640 ;; it is wrong to do the same thing for the -else-pop variants.
1642 ((and (or (eq 'byte-goto-if-nil (car lap0))
1643 (eq 'byte-goto-if-not-nil (car lap0))) ; gotoX
1644 (eq 'byte-goto (car lap1)) ; gotoY
1645 (eq (cdr lap0) lap2)) ; TAG X
1646 (let ((inverse (if (eq 'byte-goto-if-nil (car lap0))
1647 'byte-goto-if-not-nil 'byte-goto-if-nil)))
1648 (byte-compile-log-lap " %s %s %s:\t-->\t%s %s:"
1650 (cons inverse (cdr lap1)) lap2)
1651 (setq lap (delq lap0 lap))
1652 (setcar lap1 inverse)
1653 (setq keep-going t)))
1655 ;; const goto-if-* --> whatever
1657 ((and (eq 'byte-constant (car lap0))
1658 (memq (car lap1) byte-conditional-ops))
1659 (cond ((if (or (eq (car lap1) 'byte-goto-if-nil)
1660 (eq (car lap1) 'byte-goto-if-nil-else-pop))
1662 (not (car (cdr lap0))))
1663 (byte-compile-log-lap " %s %s\t-->\t<deleted>"
1665 (setq rest (cdr rest)
1666 lap (delq lap0 (delq lap1 lap))))
1668 (if (memq (car lap1) byte-goto-always-pop-ops)
1670 (byte-compile-log-lap " %s %s\t-->\t%s"
1671 lap0 lap1 (cons 'byte-goto (cdr lap1)))
1672 (setq lap (delq lap0 lap)))
1673 (byte-compile-log-lap " %s %s\t-->\t%s" lap0 lap1
1674 (cons 'byte-goto (cdr lap1))))
1675 (setcar lap1 'byte-goto)))
1676 (setq keep-going t))
1678 ;; varref-X varref-X --> varref-X dup
1679 ;; varref-X [dup ...] varref-X --> varref-X [dup ...] dup
1680 ;; We don't optimize the const-X variations on this here,
1681 ;; because that would inhibit some goto optimizations; we
1682 ;; optimize the const-X case after all other optimizations.
1684 ((and (eq 'byte-varref (car lap0))
1686 (setq tmp (cdr rest))
1687 (while (eq (car (car tmp)) 'byte-dup)
1688 (setq tmp (cdr tmp)))
1690 (eq (cdr lap0) (cdr (car tmp)))
1691 (eq 'byte-varref (car (car tmp))))
1692 (if (memq byte-optimize-log '(t byte))
1694 (setq tmp2 (cdr rest))
1695 (while (not (eq tmp tmp2))
1696 (setq tmp2 (cdr tmp2)
1697 str (concat str " dup")))
1698 (byte-compile-log-lap " %s%s %s\t-->\t%s%s dup"
1699 lap0 str lap0 lap0 str)))
1701 (setcar (car tmp) 'byte-dup)
1702 (setcdr (car tmp) 0)
1705 ;; TAG1: TAG2: --> TAG1: <deleted>
1706 ;; (and other references to TAG2 are replaced with TAG1)
1708 ((and (eq (car lap0) 'TAG)
1709 (eq (car lap1) 'TAG))
1710 (and (memq byte-optimize-log '(t byte))
1711 (byte-compile-log " adjacent tags %d and %d merged"
1712 (nth 1 lap1) (nth 1 lap0)))
1714 (while (setq tmp2 (rassq lap0 tmp3))
1716 (setq tmp3 (cdr (memq tmp2 tmp3))))
1717 (setq lap (delq lap0 lap)
1720 ;; unused-TAG: --> <deleted>
1722 ((and (eq 'TAG (car lap0))
1723 (not (rassq lap0 lap)))
1724 (and (memq byte-optimize-log '(t byte))
1725 (byte-compile-log " unused tag %d removed" (nth 1 lap0)))
1726 (setq lap (delq lap0 lap)
1729 ;; goto ... --> goto <delete until TAG or end>
1730 ;; return ... --> return <delete until TAG or end>
1732 ((and (memq (car lap0) '(byte-goto byte-return))
1733 (not (memq (car lap1) '(TAG nil))))
1736 (opt-p (memq byte-optimize-log '(t lap)))
1738 (while (and (setq tmp (cdr tmp))
1739 (not (eq 'TAG (car (car tmp)))))
1740 (if opt-p (setq deleted (cons (car tmp) deleted)
1741 str (concat str " %s")
1745 (if (eq 'TAG (car (car tmp)))
1746 (format "%d:" (car (cdr (car tmp))))
1747 (or (car tmp) ""))))
1749 (apply 'byte-compile-log-lap-1
1751 " %s\t-->\t%s <deleted> %s")
1753 (nconc (nreverse deleted)
1754 (list tagstr lap0 tagstr)))
1755 (byte-compile-log-lap
1756 " %s <%d unreachable op%s> %s\t-->\t%s <deleted> %s"
1757 lap0 i (if (= i 1) "" "s")
1758 tagstr lap0 tagstr))))
1760 (setq keep-going t))
1762 ;; <safe-op> unbind --> unbind <safe-op>
1763 ;; (this may enable other optimizations.)
1765 ((and (eq 'byte-unbind (car lap1))
1766 (memq (car lap0) byte-after-unbind-ops))
1767 (byte-compile-log-lap " %s %s\t-->\t%s %s" lap0 lap1 lap1 lap0)
1769 (setcar (cdr rest) lap0)
1770 (setq keep-going t))
1772 ;; varbind-X unbind-N --> discard unbind-(N-1)
1773 ;; save-excursion unbind-N --> unbind-(N-1)
1774 ;; save-restriction unbind-N --> unbind-(N-1)
1776 ((and (eq 'byte-unbind (car lap1))
1777 (memq (car lap0) '(byte-varbind byte-save-excursion
1778 byte-save-restriction))
1780 (if (zerop (setcdr lap1 (1- (cdr lap1))))
1782 (if (eq (car lap0) 'byte-varbind)
1783 (setcar rest (cons 'byte-discard 0))
1784 (setq lap (delq lap0 lap)))
1785 (byte-compile-log-lap " %s %s\t-->\t%s %s"
1786 lap0 (cons (car lap1) (1+ (cdr lap1)))
1787 (if (eq (car lap0) 'byte-varbind)
1790 (if (and (/= 0 (cdr lap1))
1791 (eq (car lap0) 'byte-varbind))
1794 (setq keep-going t))
1796 ;; goto*-X ... X: goto-Y --> goto*-Y
1797 ;; goto-X ... X: return --> return
1799 ((and (memq (car lap0) byte-goto-ops)
1800 (memq (car (setq tmp (nth 1 (memq (cdr lap0) lap))))
1801 '(byte-goto byte-return)))
1802 (cond ((and (not (eq tmp lap0))
1803 (or (eq (car lap0) 'byte-goto)
1804 (eq (car tmp) 'byte-goto)))
1805 (byte-compile-log-lap " %s [%s]\t-->\t%s"
1807 (if (eq (car tmp) 'byte-return)
1808 (setcar lap0 'byte-return))
1809 (setcdr lap0 (cdr tmp))
1810 (setq keep-going t))))
1812 ;; goto-*-else-pop X ... X: goto-if-* --> whatever
1813 ;; goto-*-else-pop X ... X: discard --> whatever
1815 ((and (memq (car lap0) '(byte-goto-if-nil-else-pop
1816 byte-goto-if-not-nil-else-pop))
1817 (memq (car (car (setq tmp (cdr (memq (cdr lap0) lap)))))
1819 (cons 'byte-discard byte-conditional-ops)))
1820 (not (eq lap0 (car tmp))))
1821 (setq tmp2 (car tmp))
1822 (setq tmp3 (assq (car lap0) '((byte-goto-if-nil-else-pop
1824 (byte-goto-if-not-nil-else-pop
1825 byte-goto-if-not-nil))))
1826 (if (memq (car tmp2) tmp3)
1827 (progn (setcar lap0 (car tmp2))
1828 (setcdr lap0 (cdr tmp2))
1829 (byte-compile-log-lap " %s-else-pop [%s]\t-->\t%s"
1830 (car lap0) tmp2 lap0))
1831 ;; Get rid of the -else-pop's and jump one step further.
1832 (or (eq 'TAG (car (nth 1 tmp)))
1833 (setcdr tmp (cons (byte-compile-make-tag)
1835 (byte-compile-log-lap " %s [%s]\t-->\t%s <skip>"
1836 (car lap0) tmp2 (nth 1 tmp3))
1837 (setcar lap0 (nth 1 tmp3))
1838 (setcdr lap0 (nth 1 tmp)))
1839 (setq keep-going t))
1841 ;; const goto-X ... X: goto-if-* --> whatever
1842 ;; const goto-X ... X: discard --> whatever
1844 ((and (eq (car lap0) 'byte-constant)
1845 (eq (car lap1) 'byte-goto)
1846 (memq (car (car (setq tmp (cdr (memq (cdr lap1) lap)))))
1848 (cons 'byte-discard byte-conditional-ops)))
1849 (not (eq lap1 (car tmp))))
1850 (setq tmp2 (car tmp))
1851 (cond ((memq (car tmp2)
1852 (if (null (car (cdr lap0)))
1853 '(byte-goto-if-nil byte-goto-if-nil-else-pop)
1854 '(byte-goto-if-not-nil
1855 byte-goto-if-not-nil-else-pop)))
1856 (byte-compile-log-lap " %s goto [%s]\t-->\t%s %s"
1857 lap0 tmp2 lap0 tmp2)
1858 (setcar lap1 (car tmp2))
1859 (setcdr lap1 (cdr tmp2))
1860 ;; Let next step fix the (const,goto-if*) sequence.
1861 (setq rest (cons nil rest)))
1863 ;; Jump one step further
1864 (byte-compile-log-lap
1865 " %s goto [%s]\t-->\t<deleted> goto <skip>"
1867 (or (eq 'TAG (car (nth 1 tmp)))
1868 (setcdr tmp (cons (byte-compile-make-tag)
1870 (setcdr lap1 (car (cdr tmp)))
1871 (setq lap (delq lap0 lap))))
1872 (setq keep-going t))
1874 ;; X: varref-Y ... varset-Y goto-X -->
1875 ;; X: varref-Y Z: ... dup varset-Y goto-Z
1876 ;; (varset-X goto-BACK, BACK: varref-X --> copy the varref down.)
1877 ;; (This is so usual for while loops that it is worth handling).
1879 ((and (eq (car lap1) 'byte-varset)
1880 (eq (car lap2) 'byte-goto)
1881 (not (memq (cdr lap2) rest)) ;Backwards jump
1882 (eq (car (car (setq tmp (cdr (memq (cdr lap2) lap)))))
1884 (eq (cdr (car tmp)) (cdr lap1))
1885 (not (eq (built-in-variable-type (car (cdr lap1)))
1887 ;;(byte-compile-log-lap " Pulled %s to end of loop" (car tmp))
1888 (let ((newtag (byte-compile-make-tag)))
1889 (byte-compile-log-lap
1890 " %s: %s ... %s %s\t-->\t%s: %s %s: ... %s %s %s"
1891 (nth 1 (cdr lap2)) (car tmp)
1893 (nth 1 (cdr lap2)) (car tmp)
1894 (nth 1 newtag) 'byte-dup lap1
1895 (cons 'byte-goto newtag)
1897 (setcdr rest (cons (cons 'byte-dup 0) (cdr rest)))
1898 (setcdr tmp (cons (setcdr lap2 newtag) (cdr tmp))))
1900 (setq keep-going t))
1902 ;; goto-X Y: ... X: goto-if*-Y --> goto-if-not-*-X+1 Y:
1903 ;; (This can pull the loop test to the end of the loop)
1905 ((and (eq (car lap0) 'byte-goto)
1906 (eq (car lap1) 'TAG)
1908 (cdr (car (setq tmp (cdr (memq (cdr lap0) lap))))))
1909 (memq (car (car tmp))
1910 '(byte-goto byte-goto-if-nil byte-goto-if-not-nil
1911 byte-goto-if-nil-else-pop)))
1912 ;; (byte-compile-log-lap " %s %s, %s %s --> moved conditional"
1913 ;; lap0 lap1 (cdr lap0) (car tmp))
1914 (let ((newtag (byte-compile-make-tag)))
1915 (byte-compile-log-lap
1916 "%s %s: ... %s: %s\t-->\t%s ... %s:"
1917 lap0 (nth 1 lap1) (nth 1 (cdr lap0)) (car tmp)
1918 (cons (cdr (assq (car (car tmp))
1919 '((byte-goto-if-nil . byte-goto-if-not-nil)
1920 (byte-goto-if-not-nil . byte-goto-if-nil)
1921 (byte-goto-if-nil-else-pop .
1922 byte-goto-if-not-nil-else-pop)
1923 (byte-goto-if-not-nil-else-pop .
1924 byte-goto-if-nil-else-pop))))
1929 (setcdr tmp (cons (setcdr lap0 newtag) (cdr tmp)))
1930 (if (eq (car (car tmp)) 'byte-goto-if-nil-else-pop)
1931 ;; We can handle this case but not the -if-not-nil case,
1932 ;; because we won't know which non-nil constant to push.
1933 (setcdr rest (cons (cons 'byte-constant
1934 (byte-compile-get-constant nil))
1936 (setcar lap0 (nth 1 (memq (car (car tmp))
1937 '(byte-goto-if-nil-else-pop
1938 byte-goto-if-not-nil
1940 byte-goto-if-not-nil
1941 byte-goto byte-goto))))
1943 (setq keep-going t))
1945 (setq rest (cdr rest)))
1948 ;; Rebuild byte-compile-constants / byte-compile-variables.
1949 ;; Simple optimizations that would inhibit other optimizations if they
1950 ;; were done in the optimizing loop, and optimizations which there is no
1951 ;; need to do more than once.
1952 (setq byte-compile-constants nil
1953 byte-compile-variables nil
1954 variable-frequency (make-hash-table :test 'eq))
1957 (setq lap0 (car rest)
1959 (if (memq (car lap0) byte-constref-ops)
1960 (if (not (eq (car lap0) 'byte-constant))
1962 (incf (gethash (cdr lap0) variable-frequency 0))
1963 (or (memq (cdr lap0) byte-compile-variables)
1964 (setq byte-compile-variables
1965 (cons (cdr lap0) byte-compile-variables))))
1966 (or (memq (cdr lap0) byte-compile-constants)
1967 (setq byte-compile-constants (cons (cdr lap0)
1968 byte-compile-constants)))))
1970 ;; const-C varset-X const-C --> const-C dup varset-X
1971 ;; const-C varbind-X const-C --> const-C dup varbind-X
1973 (and (eq (car lap0) 'byte-constant)
1974 (eq (car (nth 2 rest)) 'byte-constant)
1975 (eq (cdr lap0) (cdr (nth 2 rest)))
1976 (memq (car lap1) '(byte-varbind byte-varset)))
1977 (byte-compile-log-lap " %s %s %s\t-->\t%s dup %s"
1978 lap0 lap1 lap0 lap0 lap1)
1979 (setcar (cdr (cdr rest)) (cons (car lap1) (cdr lap1)))
1980 (setcar (cdr rest) (cons 'byte-dup 0))
1983 ;; const-X [dup/const-X ...] --> const-X [dup ...] dup
1984 ;; varref-X [dup/varref-X ...] --> varref-X [dup ...] dup
1986 ((memq (car lap0) '(byte-constant byte-varref))
1990 (while (eq 'byte-dup (car (car (setq tmp (cdr tmp))))))
1991 (and (eq (cdr lap0) (cdr (car tmp)))
1992 (eq (car lap0) (car (car tmp)))))
1993 (setcar tmp (cons 'byte-dup 0))
1996 (byte-compile-log-lap
1997 " %s [dup/%s]...\t-->\t%s dup..." lap0 lap0 lap0)))
1999 ;; unbind-N unbind-M --> unbind-(N+M)
2001 ((and (eq 'byte-unbind (car lap0))
2002 (eq 'byte-unbind (car lap1)))
2003 (byte-compile-log-lap " %s %s\t-->\t%s" lap0 lap1
2005 (+ (cdr lap0) (cdr lap1))))
2007 (setq lap (delq lap0 lap))
2008 (setcdr lap1 (+ (cdr lap1) (cdr lap0))))
2010 (setq rest (cdr rest)))
2011 ;; Since the first 6 entries of the compiled-function constants
2012 ;; vector are most efficient for varref/set/bind ops, we sort by
2013 ;; reference count. This generates maximally space efficient and
2014 ;; pretty time-efficient byte-code. See `byte-compile-constants-vector'.
2015 (setq byte-compile-variables
2016 (sort byte-compile-variables
2018 (< (gethash v1 variable-frequency)
2019 (gethash v2 variable-frequency)))))
2020 ;; Another hack - put the most used variable in position 6, for
2021 ;; better locality of reference with adjoining constants.
2022 (let ((tail (last byte-compile-variables 6)))
2023 (setq byte-compile-variables
2024 (append (nbutlast byte-compile-variables 6)
2026 (setq byte-compile-maxdepth (+ byte-compile-maxdepth add-depth)))
2029 (provide 'byte-optimize)
2032 ;; To avoid "lisp nesting exceeds max-lisp-eval-depth" when this file compiles
2033 ;; itself, compile some of its most used recursive functions (at load time).
2036 (or (compiled-function-p (symbol-function 'byte-optimize-form))
2037 (assq 'byte-code (symbol-function 'byte-optimize-form))
2038 (let ((byte-optimize nil)
2039 (byte-compile-warnings nil))
2042 (or noninteractive (message "compiling %s..." x))
2044 (or noninteractive (message "compiling %s...done" x)))
2045 '(byte-optimize-form
2047 byte-optimize-predicate
2048 byte-optimize-binary-predicate
2049 ;; Inserted some more than necessary, to speed it up.
2050 byte-optimize-form-code-walker
2051 byte-optimize-lapcode))))
2054 ;; END SYNC WITH 20.7.
2056 ;;; byte-optimize.el ends here