1 /* CCL (Code Conversion Language) interpreter.
2 Copyright (C) 1995, 1997 Electrotechnical Laboratory, JAPAN.
3 Licensed to the Free Software Foundation.
5 This file is part of GNU Emacs.
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 /* Synched up with : FSF Emacs 21.0.90 except TranslateCharacter */
34 #include "character.h"
36 #include "file-coding.h"
42 #endif /* not emacs */
44 /* This contains all code conversion map available to CCL. */
45 Lisp_Object Vcode_conversion_map_vector;
47 /* Alist of fontname patterns vs corresponding CCL program. */
48 Lisp_Object Vfont_ccl_encoder_alist;
50 /* This symbol is a property which associates with ccl program vector.
51 Ex: (get 'ccl-big5-encoder 'ccl-program) returns ccl program vector. */
52 Lisp_Object Qccl_program;
54 /* These symbols are properties which associate with code conversion
55 map and their ID respectively. */
56 Lisp_Object Qcode_conversion_map;
57 Lisp_Object Qcode_conversion_map_id;
59 /* Symbols of ccl program have this property, a value of the property
60 is an index for Vccl_program_table. */
61 Lisp_Object Qccl_program_idx;
63 /* Table of registered CCL programs. Each element is a vector of
64 NAME, CCL_PROG, and RESOLVEDP where NAME (symbol) is the name of
65 the program, CCL_PROG (vector) is the compiled code of the program,
66 RESOLVEDP (t or nil) is the flag to tell if symbols in CCL_PROG is
67 already resolved to index numbers or not. */
68 Lisp_Object Vccl_program_table;
70 /* CCL (Code Conversion Language) is a simple language which has
71 operations on one input buffer, one output buffer, and 7 registers.
72 The syntax of CCL is described in `ccl.el'. Emacs Lisp function
73 `ccl-compile' compiles a CCL program and produces a CCL code which
74 is a vector of integers. The structure of this vector is as
75 follows: The 1st element: buffer-magnification, a factor for the
76 size of output buffer compared with the size of input buffer. The
77 2nd element: address of CCL code to be executed when encountered
78 with end of input stream. The 3rd and the remaining elements: CCL
81 /* Header of CCL compiled code */
82 #define CCL_HEADER_BUF_MAG 0
83 #define CCL_HEADER_EOF 1
84 #define CCL_HEADER_MAIN 2
86 /* CCL code is a sequence of 28-bit non-negative integers (i.e. the
87 MSB is always 0), each contains CCL command and/or arguments in the
90 |----------------- integer (28-bit) ------------------|
91 |------- 17-bit ------|- 3-bit --|- 3-bit --|- 5-bit -|
92 |--constant argument--|-register-|-register-|-command-|
93 ccccccccccccccccc RRR rrr XXXXX
95 |------- relative address -------|-register-|-command-|
96 cccccccccccccccccccc rrr XXXXX
98 |------------- constant or other args ----------------|
99 cccccccccccccccccccccccccccc
101 where, `cc...c' is a non-negative integer indicating constant value
102 (the left most `c' is always 0) or an absolute jump address, `RRR'
103 and `rrr' are CCL register number, `XXXXX' is one of the following
108 Each comment fields shows one or more lines for command syntax and
109 the following lines for semantics of the command. In semantics, IC
110 stands for Instruction Counter. */
112 #define CCL_SetRegister 0x00 /* Set register a register value:
113 1:00000000000000000RRRrrrXXXXX
114 ------------------------------
118 #define CCL_SetShortConst 0x01 /* Set register a short constant value:
119 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
120 ------------------------------
121 reg[rrr] = CCCCCCCCCCCCCCCCCCC;
124 #define CCL_SetConst 0x02 /* Set register a constant value:
125 1:00000000000000000000rrrXXXXX
127 ------------------------------
132 #define CCL_SetArray 0x03 /* Set register an element of array:
133 1:CCCCCCCCCCCCCCCCCRRRrrrXXXXX
137 ------------------------------
138 if (0 <= reg[RRR] < CC..C)
139 reg[rrr] = ELEMENT[reg[RRR]];
143 #define CCL_Jump 0x04 /* Jump:
144 1:A--D--D--R--E--S--S-000XXXXX
145 ------------------------------
149 /* Note: If CC..C is greater than 0, the second code is omitted. */
151 #define CCL_JumpCond 0x05 /* Jump conditional:
152 1:A--D--D--R--E--S--S-rrrXXXXX
153 ------------------------------
159 #define CCL_WriteRegisterJump 0x06 /* Write register and jump:
160 1:A--D--D--R--E--S--S-rrrXXXXX
161 ------------------------------
166 #define CCL_WriteRegisterReadJump 0x07 /* Write register, read, and jump:
167 1:A--D--D--R--E--S--S-rrrXXXXX
168 2:A--D--D--R--E--S--S-rrrYYYYY
169 -----------------------------
175 /* Note: If read is suspended, the resumed execution starts from the
176 second code (YYYYY == CCL_ReadJump). */
178 #define CCL_WriteConstJump 0x08 /* Write constant and jump:
179 1:A--D--D--R--E--S--S-000XXXXX
181 ------------------------------
186 #define CCL_WriteConstReadJump 0x09 /* Write constant, read, and jump:
187 1:A--D--D--R--E--S--S-rrrXXXXX
189 3:A--D--D--R--E--S--S-rrrYYYYY
190 -----------------------------
196 /* Note: If read is suspended, the resumed execution starts from the
197 second code (YYYYY == CCL_ReadJump). */
199 #define CCL_WriteStringJump 0x0A /* Write string and jump:
200 1:A--D--D--R--E--S--S-000XXXXX
202 3:0000STRIN[0]STRIN[1]STRIN[2]
204 ------------------------------
205 write_string (STRING, LENGTH);
209 #define CCL_WriteArrayReadJump 0x0B /* Write an array element, read, and jump:
210 1:A--D--D--R--E--S--S-rrrXXXXX
215 N:A--D--D--R--E--S--S-rrrYYYYY
216 ------------------------------
217 if (0 <= reg[rrr] < LENGTH)
218 write (ELEMENT[reg[rrr]]);
219 IC += LENGTH + 2; (... pointing at N+1)
223 /* Note: If read is suspended, the resumed execution starts from the
224 Nth code (YYYYY == CCL_ReadJump). */
226 #define CCL_ReadJump 0x0C /* Read and jump:
227 1:A--D--D--R--E--S--S-rrrYYYYY
228 -----------------------------
233 #define CCL_Branch 0x0D /* Jump by branch table:
234 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
235 2:A--D--D--R--E-S-S[0]000XXXXX
236 3:A--D--D--R--E-S-S[1]000XXXXX
238 ------------------------------
239 if (0 <= reg[rrr] < CC..C)
240 IC += ADDRESS[reg[rrr]];
242 IC += ADDRESS[CC..C];
245 #define CCL_ReadRegister 0x0E /* Read bytes into registers:
246 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
247 2:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
249 ------------------------------
254 #define CCL_WriteExprConst 0x0F /* write result of expression:
255 1:00000OPERATION000RRR000XXXXX
257 ------------------------------
258 write (reg[RRR] OPERATION CONSTANT);
262 /* Note: If the Nth read is suspended, the resumed execution starts
263 from the Nth code. */
265 #define CCL_ReadBranch 0x10 /* Read one byte into a register,
266 and jump by branch table:
267 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
268 2:A--D--D--R--E-S-S[0]000XXXXX
269 3:A--D--D--R--E-S-S[1]000XXXXX
271 ------------------------------
273 if (0 <= reg[rrr] < CC..C)
274 IC += ADDRESS[reg[rrr]];
276 IC += ADDRESS[CC..C];
279 #define CCL_WriteRegister 0x11 /* Write registers:
280 1:CCCCCCCCCCCCCCCCCCCrrrXXXXX
281 2:CCCCCCCCCCCCCCCCCCCrrrXXXXX
283 ------------------------------
289 /* Note: If the Nth write is suspended, the resumed execution
290 starts from the Nth code. */
292 #define CCL_WriteExprRegister 0x12 /* Write result of expression
293 1:00000OPERATIONRrrRRR000XXXXX
294 ------------------------------
295 write (reg[RRR] OPERATION reg[Rrr]);
298 #define CCL_Call 0x13 /* Call the CCL program whose ID is
300 1:CCCCCCCCCCCCCCCCCCCCFFFXXXXX
301 [2:00000000cccccccccccccccccccc]
302 ------------------------------
310 #define CCL_WriteConstString 0x14 /* Write a constant or a string:
311 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
312 [2:0000STRIN[0]STRIN[1]STRIN[2]]
314 -----------------------------
318 write_string (STRING, CC..C);
319 IC += (CC..C + 2) / 3;
322 #define CCL_WriteArray 0x15 /* Write an element of array:
323 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
327 ------------------------------
328 if (0 <= reg[rrr] < CC..C)
329 write (ELEMENT[reg[rrr]]);
333 #define CCL_End 0x16 /* Terminate:
334 1:00000000000000000000000XXXXX
335 ------------------------------
339 /* The following two codes execute an assignment arithmetic/logical
340 operation. The form of the operation is like REG OP= OPERAND. */
342 #define CCL_ExprSelfConst 0x17 /* REG OP= constant:
343 1:00000OPERATION000000rrrXXXXX
345 ------------------------------
346 reg[rrr] OPERATION= CONSTANT;
349 #define CCL_ExprSelfReg 0x18 /* REG1 OP= REG2:
350 1:00000OPERATION000RRRrrrXXXXX
351 ------------------------------
352 reg[rrr] OPERATION= reg[RRR];
355 /* The following codes execute an arithmetic/logical operation. The
356 form of the operation is like REG_X = REG_Y OP OPERAND2. */
358 #define CCL_SetExprConst 0x19 /* REG_X = REG_Y OP constant:
359 1:00000OPERATION000RRRrrrXXXXX
361 ------------------------------
362 reg[rrr] = reg[RRR] OPERATION CONSTANT;
366 #define CCL_SetExprReg 0x1A /* REG1 = REG2 OP REG3:
367 1:00000OPERATIONRrrRRRrrrXXXXX
368 ------------------------------
369 reg[rrr] = reg[RRR] OPERATION reg[Rrr];
372 #define CCL_JumpCondExprConst 0x1B /* Jump conditional according to
373 an operation on constant:
374 1:A--D--D--R--E--S--S-rrrXXXXX
377 -----------------------------
378 reg[7] = reg[rrr] OPERATION CONSTANT;
385 #define CCL_JumpCondExprReg 0x1C /* Jump conditional according to
386 an operation on register:
387 1:A--D--D--R--E--S--S-rrrXXXXX
390 -----------------------------
391 reg[7] = reg[rrr] OPERATION reg[RRR];
398 #define CCL_ReadJumpCondExprConst 0x1D /* Read and jump conditional according
399 to an operation on constant:
400 1:A--D--D--R--E--S--S-rrrXXXXX
403 -----------------------------
405 reg[7] = reg[rrr] OPERATION CONSTANT;
412 #define CCL_ReadJumpCondExprReg 0x1E /* Read and jump conditional according
413 to an operation on register:
414 1:A--D--D--R--E--S--S-rrrXXXXX
417 -----------------------------
419 reg[7] = reg[rrr] OPERATION reg[RRR];
426 #define CCL_Extension 0x1F /* Extended CCL code
427 1:ExtendedCOMMNDRrrRRRrrrXXXXX
430 ------------------------------
431 extended_command (rrr,RRR,Rrr,ARGS)
435 Here after, Extended CCL Instructions.
436 Bit length of extended command is 14.
437 Therefore, the instruction code range is 0..16384(0x3fff).
440 /* Read a multibyte characeter.
441 A code point is stored into reg[rrr]. A charset ID is stored into
444 #define CCL_ReadMultibyteChar2 0x00 /* Read Multibyte Character
445 1:ExtendedCOMMNDRrrRRRrrrXXXXX */
447 /* Write a multibyte character.
448 Write a character whose code point is reg[rrr] and the charset ID
451 #define CCL_WriteMultibyteChar2 0x01 /* Write Multibyte Character
452 1:ExtendedCOMMNDRrrRRRrrrXXXXX */
454 /* Translate a character whose code point is reg[rrr] and the charset
455 ID is reg[RRR] by a translation table whose ID is reg[Rrr].
457 A translated character is set in reg[rrr] (code point) and reg[RRR]
460 #define CCL_TranslateCharacter 0x02 /* Translate a multibyte character
461 1:ExtendedCOMMNDRrrRRRrrrXXXXX */
463 /* Translate a character whose code point is reg[rrr] and the charset
464 ID is reg[RRR] by a translation table whose ID is ARGUMENT.
466 A translated character is set in reg[rrr] (code point) and reg[RRR]
469 #define CCL_TranslateCharacterConstTbl 0x03 /* Translate a multibyte character
470 1:ExtendedCOMMNDRrrRRRrrrXXXXX
471 2:ARGUMENT(Translation Table ID)
474 /* Iterate looking up MAPs for reg[rrr] starting from the Nth (N =
475 reg[RRR]) MAP until some value is found.
477 Each MAP is a Lisp vector whose element is number, nil, t, or
479 If the element is nil, ignore the map and proceed to the next map.
480 If the element is t or lambda, finish without changing reg[rrr].
481 If the element is a number, set reg[rrr] to the number and finish.
483 Detail of the map structure is described in the comment for
484 CCL_MapMultiple below. */
486 #define CCL_IterateMultipleMap 0x10 /* Iterate multiple maps
487 1:ExtendedCOMMNDXXXRRRrrrXXXXX
494 /* Map the code in reg[rrr] by MAPs starting from the Nth (N =
497 MAPs are supplied in the succeeding CCL codes as follows:
499 When CCL program gives this nested structure of map to this command:
502 (MAP-ID121 MAP-ID122 MAP-ID123)
505 (MAP-ID211 (MAP-ID2111) MAP-ID212)
507 the compiled CCL code has this sequence:
508 CCL_MapMultiple (CCL code of this command)
509 16 (total number of MAPs and SEPARATORs)
527 A value of each SEPARATOR follows this rule:
528 MAP-SET := SEPARATOR [(MAP-ID | MAP-SET)]+
529 SEPARATOR := -(number of MAP-IDs and SEPARATORs in the MAP-SET)
531 (*)....Nest level of MAP-SET must not be over than MAX_MAP_SET_LEVEL.
533 When some map fails to map (i.e. it doesn't have a value for
534 reg[rrr]), the mapping is treated as identity.
536 The mapping is iterated for all maps in each map set (set of maps
537 separated by SEPARATOR) except in the case that lambda is
538 encountered. More precisely, the mapping proceeds as below:
540 At first, VAL0 is set to reg[rrr], and it is translated by the
541 first map to VAL1. Then, VAL1 is translated by the next map to
542 VAL2. This mapping is iterated until the last map is used. The
543 result of the mapping is the last value of VAL?. When the mapping
544 process reached to the end of the map set, it moves to the next
545 map set. If the next does not exit, the mapping process terminates,
546 and regard the last value as a result.
548 But, when VALm is mapped to VALn and VALn is not a number, the
549 mapping proceeds as follows:
551 If VALn is nil, the lastest map is ignored and the mapping of VALm
552 proceeds to the next map.
554 In VALn is t, VALm is reverted to reg[rrr] and the mapping of VALm
555 proceeds to the next map.
557 If VALn is lambda, move to the next map set like reaching to the
558 end of the current map set.
560 If VALn is a symbol, call the CCL program refered by it.
561 Then, use reg[rrr] as a mapped value except for -1, -2 and -3.
562 Such special values are regarded as nil, t, and lambda respectively.
564 Each map is a Lisp vector of the following format (a) or (b):
565 (a)......[STARTPOINT VAL1 VAL2 ...]
566 (b)......[t VAL STARTPOINT ENDPOINT],
568 STARTPOINT is an offset to be used for indexing a map,
569 ENDPOINT is a maximum index number of a map,
570 VAL and VALn is a number, nil, t, or lambda.
572 Valid index range of a map of type (a) is:
573 STARTPOINT <= index < STARTPOINT + map_size - 1
574 Valid index range of a map of type (b) is:
575 STARTPOINT <= index < ENDPOINT */
577 #define CCL_MapMultiple 0x11 /* Mapping by multiple code conversion maps
578 1:ExtendedCOMMNDXXXRRRrrrXXXXX
590 #define MAX_MAP_SET_LEVEL 30
598 static tr_stack mapping_stack[MAX_MAP_SET_LEVEL];
599 static tr_stack *mapping_stack_pointer;
601 /* If this variable is non-zero, it indicates the stack_idx
602 of immediately called by CCL_MapMultiple. */
603 static int stack_idx_of_map_multiple;
605 #define PUSH_MAPPING_STACK(restlen, orig) \
607 mapping_stack_pointer->rest_length = (restlen); \
608 mapping_stack_pointer->orig_val = (orig); \
609 mapping_stack_pointer++; \
612 #define POP_MAPPING_STACK(restlen, orig) \
614 mapping_stack_pointer--; \
615 (restlen) = mapping_stack_pointer->rest_length; \
616 (orig) = mapping_stack_pointer->orig_val; \
619 #define CCL_CALL_FOR_MAP_INSTRUCTION(symbol, ret_ic) \
621 struct ccl_program called_ccl; \
622 if (stack_idx >= 256 \
623 || (setup_ccl_program (&called_ccl, (symbol)) != 0)) \
627 ccl_prog = ccl_prog_stack_struct[0].ccl_prog; \
628 ic = ccl_prog_stack_struct[0].ic; \
632 ccl_prog_stack_struct[stack_idx].ccl_prog = ccl_prog; \
633 ccl_prog_stack_struct[stack_idx].ic = (ret_ic); \
635 ccl_prog = called_ccl.prog; \
636 ic = CCL_HEADER_MAIN; \
637 /* The "if (1)" prevents warning \
638 "end-of loop code not reached" */ \
639 if (1) goto ccl_repeat; \
642 #define CCL_MapSingle 0x12 /* Map by single code conversion map
643 1:ExtendedCOMMNDXXXRRRrrrXXXXX
645 ------------------------------
646 Map reg[rrr] by MAP-ID.
647 If some valid mapping is found,
648 set reg[rrr] to the result,
653 /* CCL arithmetic/logical operators. */
654 #define CCL_PLUS 0x00 /* X = Y + Z */
655 #define CCL_MINUS 0x01 /* X = Y - Z */
656 #define CCL_MUL 0x02 /* X = Y * Z */
657 #define CCL_DIV 0x03 /* X = Y / Z */
658 #define CCL_MOD 0x04 /* X = Y % Z */
659 #define CCL_AND 0x05 /* X = Y & Z */
660 #define CCL_OR 0x06 /* X = Y | Z */
661 #define CCL_XOR 0x07 /* X = Y ^ Z */
662 #define CCL_LSH 0x08 /* X = Y << Z */
663 #define CCL_RSH 0x09 /* X = Y >> Z */
664 #define CCL_LSH8 0x0A /* X = (Y << 8) | Z */
665 #define CCL_RSH8 0x0B /* X = Y >> 8, r[7] = Y & 0xFF */
666 #define CCL_DIVMOD 0x0C /* X = Y / Z, r[7] = Y % Z */
667 #define CCL_LS 0x10 /* X = (X < Y) */
668 #define CCL_GT 0x11 /* X = (X > Y) */
669 #define CCL_EQ 0x12 /* X = (X == Y) */
670 #define CCL_LE 0x13 /* X = (X <= Y) */
671 #define CCL_GE 0x14 /* X = (X >= Y) */
672 #define CCL_NE 0x15 /* X = (X != Y) */
674 #define CCL_DECODE_SJIS 0x16 /* X = HIGHER_BYTE (DE-SJIS (Y, Z))
675 r[7] = LOWER_BYTE (DE-SJIS (Y, Z)) */
676 #define CCL_ENCODE_SJIS 0x17 /* X = HIGHER_BYTE (SJIS (Y, Z))
677 r[7] = LOWER_BYTE (SJIS (Y, Z) */
679 /* Terminate CCL program successfully. */
680 #define CCL_SUCCESS \
682 ccl->status = CCL_STAT_SUCCESS; \
683 /* The "if (1)" inhibits the warning \
684 "end-of loop code not reached" */ \
685 if (1) goto ccl_finish; \
688 /* Suspend CCL program because of reading from empty input buffer or
689 writing to full output buffer. When this program is resumed, the
690 same I/O command is executed. */
691 #define CCL_SUSPEND(stat) \
694 ccl->status = (stat); \
695 /* The "if (1)" inhibits the warning \
696 "end-of loop code not reached" */ \
697 if (1) goto ccl_finish; \
700 /* Terminate CCL program because of invalid command. Should not occur
701 in the normal case. */
702 #define CCL_INVALID_CMD \
704 ccl->status = CCL_STAT_INVALID_CMD; \
705 /* The "if (1)" inhibits the warning \
706 "end-of loop code not reached" */ \
707 if (1) goto ccl_error_handler; \
710 /* Encode one character CH to multibyte form and write to the current
711 output buffer. At encoding time, if CH is less than 256, CH is
712 written as is. At decoding time, if CH cannot be regarded as an
713 ASCII character, write it in multibyte form. */
714 #define CCL_WRITE_CHAR(ch) \
718 if (conversion_mode == CCL_MODE_ENCODING) \
722 if (ccl->eol_type == CCL_CODING_EOL_CRLF) \
724 Dynarr_add (destination, '\r'); \
725 Dynarr_add (destination, '\n'); \
727 else if (ccl->eol_type == CCL_CODING_EOL_CR) \
728 Dynarr_add (destination, '\r'); \
730 Dynarr_add (destination, '\n'); \
732 else if ((ch) < 0x100) \
734 Dynarr_add (destination, ch); \
738 Bufbyte work[MAX_EMCHAR_LEN]; \
740 len = non_ascii_set_charptr_emchar (work, ch); \
741 Dynarr_add_many (destination, work, len); \
746 if (!CHAR_MULTIBYTE_P(ch)) \
748 Dynarr_add (destination, ch); \
752 Bufbyte work[MAX_EMCHAR_LEN]; \
754 len = non_ascii_set_charptr_emchar (work, ch); \
755 Dynarr_add_many (destination, work, len); \
760 /* Write a string at ccl_prog[IC] of length LEN to the current output
761 buffer. But this macro treat this string as a binary. Therefore,
762 cannot handle a multibyte string except for Control-1 characters. */
763 #define CCL_WRITE_STRING(len) \
765 Bufbyte work[MAX_EMCHAR_LEN]; \
769 else if (conversion_mode == CCL_MODE_ENCODING) \
771 for (i = 0; i < (len); i++) \
773 ch = ((XINT (ccl_prog[ic + (i / 3)])) \
774 >> ((2 - (i % 3)) * 8)) & 0xFF; \
777 if (ccl->eol_type == CCL_CODING_EOL_CRLF) \
779 Dynarr_add (destination, '\r'); \
780 Dynarr_add (destination, '\n'); \
782 else if (ccl->eol_type == CCL_CODING_EOL_CR) \
783 Dynarr_add (destination, '\r'); \
785 Dynarr_add (destination, '\n'); \
789 Dynarr_add (destination, ch); \
793 bytes = non_ascii_set_charptr_emchar (work, ch); \
794 Dynarr_add_many (destination, work, len); \
800 for (i = 0; i < (len); i++) \
802 ch = ((XINT (ccl_prog[ic + (i / 3)])) \
803 >> ((2 - (i % 3)) * 8)) & 0xFF; \
804 if (!CHAR_MULTIBYTE_P(ch)) \
806 Dynarr_add (destination, ch); \
810 bytes = non_ascii_set_charptr_emchar (work, ch); \
811 Dynarr_add_many (destination, work, len); \
817 /* Read one byte from the current input buffer into Rth register. */
818 #define CCL_READ_CHAR(r) \
826 if (ccl->last_block) \
832 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_SRC); \
836 #define POSSIBLE_LEADING_BYTE_P(leading_byte) \
837 ((leading_byte > MIN_LEADING_BYTE) && \
838 (leading_byte - MIN_LEADING_BYTE) < NUM_LEADING_BYTES)
840 /* Set C to the character code made from CHARSET and CODE. This is
841 like MAKE_CHAR but check the validity of CHARSET and CODE. If they
842 are not valid, set C to (CODE & 0xFF) because that is usually the
843 case that CCL_ReadMultibyteChar2 read an invalid code and it set
844 CODE to that invalid byte. */
846 /* On XEmacs, TranslateCharacter is not supported. Thus, this
847 macro is not used. */
849 #define CCL_MAKE_CHAR(charset, code, c) \
851 if ((charset) == CHARSET_ASCII) \
852 (c) = (code) & 0xFF; \
853 else if (CHARSET_DEFINED_P (charset) \
854 && ((code) & 0x7F) >= 32 \
855 && ((code) < 256 || ((code >> 7) & 0x7F) >= 32)) \
857 int c1 = (code) & 0x7F, c2 = 0; \
860 c2 = c1, c1 = ((code) >> 7) & 0x7F; \
861 (c) = MAKE_CHAR (charset, c1, c2); \
864 (c) = (code) & 0xFF; \
869 /* Execute CCL code on SRC_BYTES length text at SOURCE. The resulting
870 text goes to a place pointed by DESTINATION, the length of which
871 should not exceed DST_BYTES. The bytes actually processed is
872 returned as *CONSUMED. The return value is the length of the
873 resulting text. As a side effect, the contents of CCL registers
874 are updated. If SOURCE or DESTINATION is NULL, only operations on
875 registers are permitted. */
878 #define CCL_DEBUG_BACKTRACE_LEN 256
879 int ccl_backtrace_table[CCL_BACKTRACE_TABLE];
880 int ccl_backtrace_idx;
883 struct ccl_prog_stack
885 Lisp_Object *ccl_prog; /* Pointer to an array of CCL code. */
886 int ic; /* Instruction Counter. */
889 /* For the moment, we only support depth 256 of stack. */
890 static struct ccl_prog_stack ccl_prog_stack_struct[256];
893 ccl_driver (struct ccl_program *ccl,
894 const unsigned char *source,
895 unsigned_char_dynarr *destination,
900 register int *reg = ccl->reg;
901 register int ic = ccl->ic;
902 register int code = -1;
903 register int field1, field2;
904 register Lisp_Object *ccl_prog = ccl->prog;
905 const unsigned char *src = source, *src_end = src + src_bytes;
908 int stack_idx = ccl->stack_idx;
909 /* Instruction counter of the current CCL code. */
912 if (ic >= ccl->eof_ic)
913 ic = CCL_HEADER_MAIN;
915 if (ccl->buf_magnification ==0) /* We can't produce any bytes. */
918 /* Set mapping stack pointer. */
919 mapping_stack_pointer = mapping_stack;
922 ccl_backtrace_idx = 0;
929 ccl_backtrace_table[ccl_backtrace_idx++] = ic;
930 if (ccl_backtrace_idx >= CCL_DEBUG_BACKTRACE_LEN)
931 ccl_backtrace_idx = 0;
932 ccl_backtrace_table[ccl_backtrace_idx] = 0;
935 if (!NILP (Vquit_flag) && NILP (Vinhibit_quit))
937 /* We can't just signal Qquit, instead break the loop as if
938 the whole data is processed. Don't reset Vquit_flag, it
939 must be handled later at a safer place. */
941 src = source + src_bytes;
942 ccl->status = CCL_STAT_QUIT;
947 code = XINT (ccl_prog[ic]); ic++;
949 field2 = (code & 0xFF) >> 5;
952 #define RRR (field1 & 7)
953 #define Rrr ((field1 >> 3) & 7)
955 #define EXCMD (field1 >> 6)
959 case CCL_SetRegister: /* 00000000000000000RRRrrrXXXXX */
963 case CCL_SetShortConst: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
967 case CCL_SetConst: /* 00000000000000000000rrrXXXXX */
968 reg[rrr] = XINT (ccl_prog[ic]);
972 case CCL_SetArray: /* CCCCCCCCCCCCCCCCCCCCRRRrrrXXXXX */
975 if ((unsigned int) i < j)
976 reg[rrr] = XINT (ccl_prog[ic + i]);
980 case CCL_Jump: /* A--D--D--R--E--S--S-000XXXXX */
984 case CCL_JumpCond: /* A--D--D--R--E--S--S-rrrXXXXX */
989 case CCL_WriteRegisterJump: /* A--D--D--R--E--S--S-rrrXXXXX */
995 case CCL_WriteRegisterReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */
999 CCL_READ_CHAR (reg[rrr]);
1003 case CCL_WriteConstJump: /* A--D--D--R--E--S--S-000XXXXX */
1004 i = XINT (ccl_prog[ic]);
1009 case CCL_WriteConstReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */
1010 i = XINT (ccl_prog[ic]);
1013 CCL_READ_CHAR (reg[rrr]);
1017 case CCL_WriteStringJump: /* A--D--D--R--E--S--S-000XXXXX */
1018 j = XINT (ccl_prog[ic]);
1020 CCL_WRITE_STRING (j);
1024 case CCL_WriteArrayReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */
1026 j = XINT (ccl_prog[ic]);
1027 if ((unsigned int) i < j)
1029 i = XINT (ccl_prog[ic + 1 + i]);
1033 CCL_READ_CHAR (reg[rrr]);
1034 ic += ADDR - (j + 2);
1037 case CCL_ReadJump: /* A--D--D--R--E--S--S-rrrYYYYY */
1038 CCL_READ_CHAR (reg[rrr]);
1042 case CCL_ReadBranch: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
1043 CCL_READ_CHAR (reg[rrr]);
1044 /* fall through ... */
1045 case CCL_Branch: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
1046 if ((unsigned int) reg[rrr] < field1)
1047 ic += XINT (ccl_prog[ic + reg[rrr]]);
1049 ic += XINT (ccl_prog[ic + field1]);
1052 case CCL_ReadRegister: /* CCCCCCCCCCCCCCCCCCCCrrXXXXX */
1055 CCL_READ_CHAR (reg[rrr]);
1057 code = XINT (ccl_prog[ic]); ic++;
1059 field2 = (code & 0xFF) >> 5;
1063 case CCL_WriteExprConst: /* 1:00000OPERATION000RRR000XXXXX */
1066 j = XINT (ccl_prog[ic]);
1068 jump_address = ic + 1;
1071 case CCL_WriteRegister: /* CCCCCCCCCCCCCCCCCCCrrrXXXXX */
1077 code = XINT (ccl_prog[ic]); ic++;
1079 field2 = (code & 0xFF) >> 5;
1083 case CCL_WriteExprRegister: /* 1:00000OPERATIONRrrRRR000XXXXX */
1091 case CCL_Call: /* 1:CCCCCCCCCCCCCCCCCCCCFFFXXXXX */
1096 /* If FFF is nonzero, the CCL program ID is in the
1100 prog_id = XINT (ccl_prog[ic]);
1106 if (stack_idx >= 256
1108 || prog_id >= XVECTOR (Vccl_program_table)->size
1109 || (slot = XVECTOR (Vccl_program_table)->contents[prog_id],
1111 || !VECTORP (XVECTOR (slot)->contents[1]))
1115 ccl_prog = ccl_prog_stack_struct[0].ccl_prog;
1116 ic = ccl_prog_stack_struct[0].ic;
1121 ccl_prog_stack_struct[stack_idx].ccl_prog = ccl_prog;
1122 ccl_prog_stack_struct[stack_idx].ic = ic;
1124 ccl_prog = XVECTOR (XVECTOR (slot)->contents[1])->contents;
1125 ic = CCL_HEADER_MAIN;
1129 case CCL_WriteConstString: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
1131 CCL_WRITE_CHAR (field1);
1134 CCL_WRITE_STRING (field1);
1135 ic += (field1 + 2) / 3;
1139 case CCL_WriteArray: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
1141 if ((unsigned int) i < field1)
1143 j = XINT (ccl_prog[ic + i]);
1149 case CCL_End: /* 0000000000000000000000XXXXX */
1153 ccl_prog = ccl_prog_stack_struct[stack_idx].ccl_prog;
1154 ic = ccl_prog_stack_struct[stack_idx].ic;
1159 /* ccl->ic should points to this command code again to
1160 suppress further processing. */
1164 case CCL_ExprSelfConst: /* 00000OPERATION000000rrrXXXXX */
1165 i = XINT (ccl_prog[ic]);
1170 case CCL_ExprSelfReg: /* 00000OPERATION000RRRrrrXXXXX */
1177 case CCL_PLUS: reg[rrr] += i; break;
1178 case CCL_MINUS: reg[rrr] -= i; break;
1179 case CCL_MUL: reg[rrr] *= i; break;
1180 case CCL_DIV: reg[rrr] /= i; break;
1181 case CCL_MOD: reg[rrr] %= i; break;
1182 case CCL_AND: reg[rrr] &= i; break;
1183 case CCL_OR: reg[rrr] |= i; break;
1184 case CCL_XOR: reg[rrr] ^= i; break;
1185 case CCL_LSH: reg[rrr] <<= i; break;
1186 case CCL_RSH: reg[rrr] >>= i; break;
1187 case CCL_LSH8: reg[rrr] <<= 8; reg[rrr] |= i; break;
1188 case CCL_RSH8: reg[7] = reg[rrr] & 0xFF; reg[rrr] >>= 8; break;
1189 case CCL_DIVMOD: reg[7] = reg[rrr] % i; reg[rrr] /= i; break;
1190 case CCL_LS: reg[rrr] = reg[rrr] < i; break;
1191 case CCL_GT: reg[rrr] = reg[rrr] > i; break;
1192 case CCL_EQ: reg[rrr] = reg[rrr] == i; break;
1193 case CCL_LE: reg[rrr] = reg[rrr] <= i; break;
1194 case CCL_GE: reg[rrr] = reg[rrr] >= i; break;
1195 case CCL_NE: reg[rrr] = reg[rrr] != i; break;
1196 default: CCL_INVALID_CMD;
1200 case CCL_SetExprConst: /* 00000OPERATION000RRRrrrXXXXX */
1202 j = XINT (ccl_prog[ic]);
1204 jump_address = ++ic;
1207 case CCL_SetExprReg: /* 00000OPERATIONRrrRRRrrrXXXXX */
1214 case CCL_ReadJumpCondExprConst: /* A--D--D--R--E--S--S-rrrXXXXX */
1215 CCL_READ_CHAR (reg[rrr]);
1216 case CCL_JumpCondExprConst: /* A--D--D--R--E--S--S-rrrXXXXX */
1218 op = XINT (ccl_prog[ic]);
1219 jump_address = ic++ + ADDR;
1220 j = XINT (ccl_prog[ic]);
1225 case CCL_ReadJumpCondExprReg: /* A--D--D--R--E--S--S-rrrXXXXX */
1226 CCL_READ_CHAR (reg[rrr]);
1227 case CCL_JumpCondExprReg:
1229 op = XINT (ccl_prog[ic]);
1230 jump_address = ic++ + ADDR;
1231 j = reg[XINT (ccl_prog[ic])];
1238 case CCL_PLUS: reg[rrr] = i + j; break;
1239 case CCL_MINUS: reg[rrr] = i - j; break;
1240 case CCL_MUL: reg[rrr] = i * j; break;
1241 case CCL_DIV: reg[rrr] = i / j; break;
1242 case CCL_MOD: reg[rrr] = i % j; break;
1243 case CCL_AND: reg[rrr] = i & j; break;
1244 case CCL_OR: reg[rrr] = i | j; break;
1245 case CCL_XOR: reg[rrr] = i ^ j;; break;
1246 case CCL_LSH: reg[rrr] = i << j; break;
1247 case CCL_RSH: reg[rrr] = i >> j; break;
1248 case CCL_LSH8: reg[rrr] = (i << 8) | j; break;
1249 case CCL_RSH8: reg[rrr] = i >> 8; reg[7] = i & 0xFF; break;
1250 case CCL_DIVMOD: reg[rrr] = i / j; reg[7] = i % j; break;
1251 case CCL_LS: reg[rrr] = i < j; break;
1252 case CCL_GT: reg[rrr] = i > j; break;
1253 case CCL_EQ: reg[rrr] = i == j; break;
1254 case CCL_LE: reg[rrr] = i <= j; break;
1255 case CCL_GE: reg[rrr] = i >= j; break;
1256 case CCL_NE: reg[rrr] = i != j; break;
1257 case CCL_DECODE_SJIS:
1258 /* DECODE_SJIS set MSB for internal format
1259 as opposed to Emacs. */
1260 DECODE_SJIS (i, j, reg[rrr], reg[7]);
1264 case CCL_ENCODE_SJIS:
1265 /* ENCODE_SJIS assumes MSB of SJIS-char is set
1266 as opposed to Emacs. */
1267 ENCODE_SJIS (i | 0x80, j | 0x80, reg[rrr], reg[7]);
1269 default: CCL_INVALID_CMD;
1272 if (code == CCL_WriteExprConst || code == CCL_WriteExprRegister)
1286 case CCL_ReadMultibyteChar2:
1293 goto ccl_read_multibyte_character_suspend;
1301 reg[RRR] = LEADING_BYTE_ASCII;
1303 /* Previously, these next two elses were reversed in order,
1304 which should have worked fine, but is more fragile than
1306 else if (LEADING_BYTE_CONTROL_1 == i)
1309 goto ccl_read_multibyte_character_suspend;
1311 reg[rrr] = (*src++ - 0xA0);
1313 else if (i <= MAX_LEADING_BYTE_OFFICIAL_1)
1316 goto ccl_read_multibyte_character_suspend;
1318 reg[rrr] = (*src++ & 0x7F);
1320 else if (LEADING_BYTE_CONTROL_1 == i)
1323 goto ccl_read_multibyte_character_suspend;
1325 reg[rrr] = (*src++ - 0xA0);
1327 else if (i <= MAX_LEADING_BYTE_OFFICIAL_2)
1329 if ((src + 1) >= src_end)
1330 goto ccl_read_multibyte_character_suspend;
1332 i = (*src++ & 0x7F);
1333 reg[rrr] = ((i << 7) | (*src & 0x7F));
1336 else if (i == PRE_LEADING_BYTE_PRIVATE_1)
1338 if ((src + 1) >= src_end)
1339 goto ccl_read_multibyte_character_suspend;
1341 reg[rrr] = (*src++ & 0x7F);
1343 else if (i == PRE_LEADING_BYTE_PRIVATE_2)
1345 if ((src + 2) >= src_end)
1346 goto ccl_read_multibyte_character_suspend;
1348 i = (*src++ & 0x7F);
1349 reg[rrr] = ((i << 7) | (*src & 0x7F));
1354 /* INVALID CODE. Return a single byte character. */
1355 reg[RRR] = LEADING_BYTE_ASCII;
1360 ccl_read_multibyte_character_suspend:
1362 if (ccl->last_block)
1368 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_SRC);
1374 case CCL_WriteMultibyteChar2:
1375 i = reg[RRR]; /* charset */
1376 if (i == LEADING_BYTE_ASCII)
1377 i = reg[rrr] & 0xFF;
1378 else if (LEADING_BYTE_CONTROL_1 == i)
1379 i = ((reg[rrr] & 0xFF) - 0xA0);
1380 else if (POSSIBLE_LEADING_BYTE_P(i) &&
1381 !NILP(CHARSET_BY_LEADING_BYTE(i)))
1383 if (XCHARSET_DIMENSION (CHARSET_BY_LEADING_BYTE (i)) == 1)
1384 i = (((i - FIELD2_TO_OFFICIAL_LEADING_BYTE) << 7)
1385 | (reg[rrr] & 0x7F));
1386 else if (i <= MAX_LEADING_BYTE_OFFICIAL_2)
1387 i = ((i - FIELD1_TO_OFFICIAL_LEADING_BYTE) << 14)
1390 i = ((i - FIELD1_TO_PRIVATE_LEADING_BYTE) << 14) | reg[rrr];
1394 /* No charset we know about; use U+3012 GETA MARK */
1396 (CHARSET_BY_LEADING_BYTE(LEADING_BYTE_JAPANESE_JISX0208),
1405 case CCL_TranslateCharacter:
1407 /* XEmacs does not have translate_char, and its
1408 equivalent nor. We do nothing on this operation. */
1409 CCL_MAKE_CHAR (reg[RRR], reg[rrr], i);
1410 op = translate_char (GET_TRANSLATION_TABLE (reg[Rrr]),
1412 SPLIT_CHAR (op, reg[RRR], i, j);
1420 case CCL_TranslateCharacterConstTbl:
1422 /* XEmacs does not have translate_char, and its
1423 equivalent nor. We do nothing on this operation. */
1424 op = XINT (ccl_prog[ic]); /* table */
1426 CCL_MAKE_CHAR (reg[RRR], reg[rrr], i);
1427 op = translate_char (GET_TRANSLATION_TABLE (op), i, -1, 0, 0);
1428 SPLIT_CHAR (op, reg[RRR], i, j);
1436 case CCL_IterateMultipleMap:
1438 Lisp_Object map, content, attrib, value;
1439 int point, size, fin_ic;
1441 j = XINT (ccl_prog[ic++]); /* number of maps. */
1444 if ((j > reg[RRR]) && (j >= 0))
1458 size = XVECTOR (Vcode_conversion_map_vector)->size;
1459 point = XINT (ccl_prog[ic++]);
1460 if (point >= size) continue;
1462 XVECTOR (Vcode_conversion_map_vector)->contents[point];
1464 /* Check map validity. */
1465 if (!CONSP (map)) continue;
1467 if (!VECTORP (map)) continue;
1468 size = XVECTOR (map)->size;
1469 if (size <= 1) continue;
1471 content = XVECTOR (map)->contents[0];
1474 [STARTPOINT VAL1 VAL2 ...] or
1475 [t ELEMENT STARTPOINT ENDPOINT] */
1478 point = XUINT (content);
1479 point = op - point + 1;
1480 if (!((point >= 1) && (point < size))) continue;
1481 content = XVECTOR (map)->contents[point];
1483 else if (EQ (content, Qt))
1485 if (size != 4) continue;
1486 if ((op >= XUINT (XVECTOR (map)->contents[2]))
1487 && (op < XUINT (XVECTOR (map)->contents[3])))
1488 content = XVECTOR (map)->contents[1];
1497 else if (INTP (content))
1500 reg[rrr] = XINT(content);
1503 else if (EQ (content, Qt) || EQ (content, Qlambda))
1508 else if (CONSP (content))
1510 attrib = XCAR (content);
1511 value = XCDR (content);
1512 if (!INTP (attrib) || !INTP (value))
1515 reg[rrr] = XUINT (value);
1518 else if (SYMBOLP (content))
1519 CCL_CALL_FOR_MAP_INSTRUCTION (content, fin_ic);
1529 case CCL_MapMultiple:
1531 Lisp_Object map, content, attrib, value;
1532 int point, size, map_vector_size;
1533 int map_set_rest_length, fin_ic;
1534 int current_ic = this_ic;
1536 /* inhibit recursive call on MapMultiple. */
1537 if (stack_idx_of_map_multiple > 0)
1539 if (stack_idx_of_map_multiple <= stack_idx)
1541 stack_idx_of_map_multiple = 0;
1542 mapping_stack_pointer = mapping_stack;
1547 mapping_stack_pointer = mapping_stack;
1548 stack_idx_of_map_multiple = 0;
1550 map_set_rest_length =
1551 XINT (ccl_prog[ic++]); /* number of maps and separators. */
1552 fin_ic = ic + map_set_rest_length;
1555 if ((map_set_rest_length > reg[RRR]) && (reg[RRR] >= 0))
1559 map_set_rest_length -= i;
1565 mapping_stack_pointer = mapping_stack;
1569 if (mapping_stack_pointer <= (mapping_stack + 1))
1571 /* Set up initial state. */
1572 mapping_stack_pointer = mapping_stack;
1573 PUSH_MAPPING_STACK (0, op);
1578 /* Recover after calling other ccl program. */
1581 POP_MAPPING_STACK (map_set_rest_length, orig_op);
1582 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1586 /* Regard it as Qnil. */
1590 map_set_rest_length--;
1593 /* Regard it as Qt. */
1597 map_set_rest_length--;
1600 /* Regard it as Qlambda. */
1602 i += map_set_rest_length;
1603 ic += map_set_rest_length;
1604 map_set_rest_length = 0;
1607 /* Regard it as normal mapping. */
1608 i += map_set_rest_length;
1609 ic += map_set_rest_length;
1610 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1614 map_vector_size = XVECTOR (Vcode_conversion_map_vector)->size;
1617 for (;map_set_rest_length > 0;i++, ic++, map_set_rest_length--)
1619 point = XINT(ccl_prog[ic]);
1622 /* +1 is for including separator. */
1624 if (mapping_stack_pointer
1625 >= mapping_stack + countof (mapping_stack))
1627 PUSH_MAPPING_STACK (map_set_rest_length - point,
1629 map_set_rest_length = point;
1634 if (point >= map_vector_size) continue;
1635 map = (XVECTOR (Vcode_conversion_map_vector)
1638 /* Check map validity. */
1639 if (!CONSP (map)) continue;
1641 if (!VECTORP (map)) continue;
1642 size = XVECTOR (map)->size;
1643 if (size <= 1) continue;
1645 content = XVECTOR (map)->contents[0];
1648 [STARTPOINT VAL1 VAL2 ...] or
1649 [t ELEMENT STARTPOINT ENDPOINT] */
1652 point = XUINT (content);
1653 point = op - point + 1;
1654 if (!((point >= 1) && (point < size))) continue;
1655 content = XVECTOR (map)->contents[point];
1657 else if (EQ (content, Qt))
1659 if (size != 4) continue;
1660 if ((op >= XUINT (XVECTOR (map)->contents[2])) &&
1661 (op < XUINT (XVECTOR (map)->contents[3])))
1662 content = XVECTOR (map)->contents[1];
1675 op = XINT (content);
1676 i += map_set_rest_length - 1;
1677 ic += map_set_rest_length - 1;
1678 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1679 map_set_rest_length++;
1681 else if (CONSP (content))
1683 attrib = XCAR (content);
1684 value = XCDR (content);
1685 if (!INTP (attrib) || !INTP (value))
1688 i += map_set_rest_length - 1;
1689 ic += map_set_rest_length - 1;
1690 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1691 map_set_rest_length++;
1693 else if (EQ (content, Qt))
1697 else if (EQ (content, Qlambda))
1699 i += map_set_rest_length;
1700 ic += map_set_rest_length;
1703 else if (SYMBOLP (content))
1705 if (mapping_stack_pointer
1706 >= mapping_stack + countof (mapping_stack))
1708 PUSH_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1709 PUSH_MAPPING_STACK (map_set_rest_length, op);
1710 stack_idx_of_map_multiple = stack_idx + 1;
1711 CCL_CALL_FOR_MAP_INSTRUCTION (content, current_ic);
1716 if (mapping_stack_pointer <= (mapping_stack + 1))
1718 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1719 i += map_set_rest_length;
1720 ic += map_set_rest_length;
1721 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1731 Lisp_Object map, attrib, value, content;
1733 j = XINT (ccl_prog[ic++]); /* map_id */
1735 if (j >= XVECTOR (Vcode_conversion_map_vector)->size)
1740 map = XVECTOR (Vcode_conversion_map_vector)->contents[j];
1752 size = XVECTOR (map)->size;
1753 point = XUINT (XVECTOR (map)->contents[0]);
1754 point = op - point + 1;
1757 (!((point >= 1) && (point < size))))
1762 content = XVECTOR (map)->contents[point];
1765 else if (INTP (content))
1766 reg[rrr] = XINT (content);
1767 else if (EQ (content, Qt));
1768 else if (CONSP (content))
1770 attrib = XCAR (content);
1771 value = XCDR (content);
1772 if (!INTP (attrib) || !INTP (value))
1774 reg[rrr] = XUINT(value);
1777 else if (SYMBOLP (content))
1778 CCL_CALL_FOR_MAP_INSTRUCTION (content, ic);
1798 /* We can insert an error message only if DESTINATION is
1799 specified and we still have a room to store the message
1803 switch (ccl->status)
1805 case CCL_STAT_INVALID_CMD:
1806 sprintf(msg, "\nCCL: Invalid command %x (ccl_code = %x) at %d.",
1807 code & 0x1F, code, this_ic);
1810 int i = ccl_backtrace_idx - 1;
1813 Dynarr_add_many (destination, (unsigned char *) msg, strlen (msg));
1815 for (j = 0; j < CCL_DEBUG_BACKTRACE_LEN; j++, i--)
1817 if (i < 0) i = CCL_DEBUG_BACKTRACE_LEN - 1;
1818 if (ccl_backtrace_table[i] == 0)
1820 sprintf(msg, " %d", ccl_backtrace_table[i]);
1821 Dynarr_add_many (destination, (unsigned char *) msg, strlen (msg));
1829 sprintf(msg, "\nCCL: Exited.");
1833 sprintf(msg, "\nCCL: Unknown error type (%d).", ccl->status);
1836 Dynarr_add_many (destination, (unsigned char *) msg, strlen (msg));
1841 ccl->stack_idx = stack_idx;
1842 ccl->prog = ccl_prog;
1843 if (consumed) *consumed = src - source;
1846 return Dynarr_length (destination);
1849 /* Resolve symbols in the specified CCL code (Lisp vector). This
1850 function converts symbols of code conversion maps and character
1851 translation tables embedded in the CCL code into their ID numbers.
1853 The return value is a vector (CCL itself or a new vector in which
1854 all symbols are resolved), Qt if resolving of some symbol failed,
1855 or nil if CCL contains invalid data. */
1858 resolve_symbol_ccl_program (Lisp_Object ccl)
1860 int i, veclen, unresolved = 0;
1861 Lisp_Object result, contents, val;
1864 veclen = XVECTOR (result)->size;
1866 for (i = 0; i < veclen; i++)
1868 contents = XVECTOR (result)->contents[i];
1869 if (INTP (contents))
1871 else if (CONSP (contents)
1872 && SYMBOLP (XCAR (contents))
1873 && SYMBOLP (XCDR (contents)))
1875 /* This is the new style for embedding symbols. The form is
1876 (SYMBOL . PROPERTY). (get SYMBOL PROPERTY) should give
1879 if (EQ (result, ccl))
1880 result = Fcopy_sequence (ccl);
1882 val = Fget (XCAR (contents), XCDR (contents), Qnil);
1884 XVECTOR (result)->contents[i] = val;
1889 else if (SYMBOLP (contents))
1891 /* This is the old style for embedding symbols. This style
1892 may lead to a bug if, for instance, a translation table
1893 and a code conversion map have the same name. */
1894 if (EQ (result, ccl))
1895 result = Fcopy_sequence (ccl);
1897 val = Fget (contents, Qcode_conversion_map_id, Qnil);
1899 XVECTOR (result)->contents[i] = val;
1902 val = Fget (contents, Qccl_program_idx, Qnil);
1904 XVECTOR (result)->contents[i] = val;
1913 return (unresolved ? Qt : result);
1916 /* Return the compiled code (vector) of CCL program CCL_PROG.
1917 CCL_PROG is a name (symbol) of the program or already compiled
1918 code. If necessary, resolve symbols in the compiled code to index
1919 numbers. If we failed to get the compiled code or to resolve
1920 symbols, return Qnil. */
1923 ccl_get_compiled_code (Lisp_Object ccl_prog)
1925 Lisp_Object val, slot;
1927 if (VECTORP (ccl_prog))
1929 val = resolve_symbol_ccl_program (ccl_prog);
1930 return (VECTORP (val) ? val : Qnil);
1932 if (!SYMBOLP (ccl_prog))
1935 val = Fget (ccl_prog, Qccl_program_idx, Qnil);
1937 || XINT (val) >= XVECTOR_LENGTH (Vccl_program_table))
1939 slot = XVECTOR_DATA (Vccl_program_table)[XINT (val)];
1940 if (! VECTORP (slot)
1941 || XVECTOR (slot)->size != 3
1942 || ! VECTORP (XVECTOR_DATA (slot)[1]))
1944 if (NILP (XVECTOR_DATA (slot)[2]))
1946 val = resolve_symbol_ccl_program (XVECTOR_DATA (slot)[1]);
1947 if (! VECTORP (val))
1949 XVECTOR_DATA (slot)[1] = val;
1950 XVECTOR_DATA (slot)[2] = Qt;
1952 return XVECTOR_DATA (slot)[1];
1955 /* Setup fields of the structure pointed by CCL appropriately for the
1956 execution of CCL program CCL_PROG. CCL_PROG is the name (symbol)
1957 of the CCL program or the already compiled code (vector).
1958 Return 0 if we succeed this setup, else return -1.
1960 If CCL_PROG is nil, we just reset the structure pointed by CCL. */
1962 setup_ccl_program (struct ccl_program *ccl, Lisp_Object ccl_prog)
1966 if (! NILP (ccl_prog))
1968 ccl_prog = ccl_get_compiled_code (ccl_prog);
1969 if (! VECTORP (ccl_prog))
1971 ccl->size = XVECTOR_LENGTH (ccl_prog);
1972 ccl->prog = XVECTOR_DATA (ccl_prog);
1973 ccl->eof_ic = XINT (XVECTOR_DATA (ccl_prog)[CCL_HEADER_EOF]);
1974 ccl->buf_magnification = XINT (XVECTOR_DATA (ccl_prog)[CCL_HEADER_BUF_MAG]);
1976 ccl->ic = CCL_HEADER_MAIN;
1977 for (i = 0; i < 8; i++)
1979 ccl->last_block = 0;
1980 ccl->private_state = 0;
1983 ccl->eol_type = CCL_CODING_EOL_LF;
1989 DEFUN ("ccl-program-p", Fccl_program_p, 1, 1, 0, /*
1990 Return t if OBJECT is a CCL program name or a compiled CCL program code.
1991 See the documentation of `define-ccl-program' for the detail of CCL program.
1997 if (VECTORP (object))
1999 val = resolve_symbol_ccl_program (object);
2000 return (VECTORP (val) ? Qt : Qnil);
2002 if (!SYMBOLP (object))
2005 val = Fget (object, Qccl_program_idx, Qnil);
2006 return ((! NATNUMP (val)
2007 || XINT (val) >= XVECTOR_LENGTH (Vccl_program_table))
2011 DEFUN ("ccl-execute", Fccl_execute, 2, 2, 0, /*
2012 Execute CCL-PROGRAM with registers initialized by REGISTERS.
2014 CCL-PROGRAM is a CCL program name (symbol)
2015 or a compiled code generated by `ccl-compile' (for backward compatibility,
2016 in this case, the overhead of the execution is bigger than the former case).
2017 No I/O commands should appear in CCL-PROGRAM.
2019 REGISTERS is a vector of [R0 R1 ... R7] where RN is an initial value
2022 As side effect, each element of REGISTERS holds the value of
2023 corresponding register after the execution.
2025 See the documentation of `define-ccl-program' for the detail of CCL program.
2029 struct ccl_program ccl;
2032 if (setup_ccl_program (&ccl, ccl_prog) < 0)
2033 error ("Invalid CCL program");
2036 if (XVECTOR_LENGTH (reg) != 8)
2037 error ("Length of vector REGISTERS is not 8");
2039 for (i = 0; i < 8; i++)
2040 ccl.reg[i] = (INTP (XVECTOR_DATA (reg)[i])
2041 ? XINT (XVECTOR_DATA (reg)[i])
2044 ccl_driver (&ccl, (const unsigned char *)0,
2045 (unsigned_char_dynarr *)0, 0, (int *)0,
2048 if (ccl.status != CCL_STAT_SUCCESS)
2049 error ("Error in CCL program at %dth code", ccl.ic);
2051 for (i = 0; i < 8; i++)
2052 XSETINT (XVECTOR (reg)->contents[i], ccl.reg[i]);
2056 DEFUN ("ccl-execute-on-string", Fccl_execute_on_string,
2058 Execute CCL-PROGRAM with initial STATUS on STRING.
2060 CCL-PROGRAM is a symbol registered by register-ccl-program,
2061 or a compiled code generated by `ccl-compile' (for backward compatibility,
2062 in this case, the execution is slower).
2064 Read buffer is set to STRING, and write buffer is allocated automatically.
2066 STATUS is a vector of [R0 R1 ... R7 IC], where
2067 R0..R7 are initial values of corresponding registers,
2068 IC is the instruction counter specifying from where to start the program.
2069 If R0..R7 are nil, they are initialized to 0.
2070 If IC is nil, it is initialized to head of the CCL program.
2072 If optional 4th arg CONTINUE is non-nil, keep IC on read operation
2073 when read buffer is exhausted, else, IC is always set to the end of
2074 CCL-PROGRAM on exit.
2076 It returns the contents of write buffer as a string,
2077 and as side effect, STATUS is updated.
2079 See the documentation of `define-ccl-program' for the detail of CCL program.
2081 (ccl_prog, status, string, continue_))
2084 struct ccl_program ccl;
2086 unsigned_char_dynarr *outbuf;
2087 struct gcpro gcpro1, gcpro2;
2089 if (setup_ccl_program (&ccl, ccl_prog) < 0)
2090 error ("Invalid CCL program");
2092 CHECK_VECTOR (status);
2093 if (XVECTOR (status)->size != 9)
2094 error ("Length of vector STATUS is not 9");
2095 CHECK_STRING (string);
2097 GCPRO2 (status, string);
2099 for (i = 0; i < 8; i++)
2101 if (NILP (XVECTOR_DATA (status)[i]))
2102 XSETINT (XVECTOR_DATA (status)[i], 0);
2103 if (INTP (XVECTOR_DATA (status)[i]))
2104 ccl.reg[i] = XINT (XVECTOR_DATA (status)[i]);
2106 if (INTP (XVECTOR (status)->contents[i]))
2108 i = XINT (XVECTOR_DATA (status)[8]);
2109 if (ccl.ic < i && i < ccl.size)
2112 outbuf = Dynarr_new (unsigned_char);
2113 ccl.last_block = NILP (continue_);
2114 produced = ccl_driver (&ccl, XSTRING_DATA (string), outbuf,
2115 XSTRING_LENGTH (string),
2118 for (i = 0; i < 8; i++)
2119 XSETINT (XVECTOR_DATA (status)[i], ccl.reg[i]);
2120 XSETINT (XVECTOR_DATA (status)[8], ccl.ic);
2123 val = make_string (Dynarr_atp (outbuf, 0), produced);
2124 Dynarr_free (outbuf);
2126 if (ccl.status == CCL_STAT_SUSPEND_BY_DST)
2127 error ("Output buffer for the CCL programs overflow");
2128 if (ccl.status != CCL_STAT_SUCCESS
2129 && ccl.status != CCL_STAT_SUSPEND_BY_SRC)
2130 error ("Error in CCL program at %dth code", ccl.ic);
2135 DEFUN ("register-ccl-program", Fregister_ccl_program,
2137 Register CCL program CCL-PROG as NAME in `ccl-program-table'.
2138 CCL-PROG should be a compiled CCL program (vector), or nil.
2139 If it is nil, just reserve NAME as a CCL program name.
2140 Return index number of the registered CCL program.
2144 int len = XVECTOR_LENGTH (Vccl_program_table);
2146 Lisp_Object resolved;
2148 CHECK_SYMBOL (name);
2150 if (!NILP (ccl_prog))
2152 CHECK_VECTOR (ccl_prog);
2153 resolved = resolve_symbol_ccl_program (ccl_prog);
2154 if (! NILP (resolved))
2156 ccl_prog = resolved;
2161 for (idx = 0; idx < len; idx++)
2165 slot = XVECTOR_DATA (Vccl_program_table)[idx];
2166 if (!VECTORP (slot))
2167 /* This is the first unused slot. Register NAME here. */
2170 if (EQ (name, XVECTOR_DATA (slot)[0]))
2172 /* Update this slot. */
2173 XVECTOR_DATA (slot)[1] = ccl_prog;
2174 XVECTOR_DATA (slot)[2] = resolved;
2175 return make_int (idx);
2181 /* Extend the table. */
2182 Lisp_Object new_table;
2185 new_table = Fmake_vector (make_int (len * 2), Qnil);
2186 for (j = 0; j < len; j++)
2187 XVECTOR_DATA (new_table)[j]
2188 = XVECTOR_DATA (Vccl_program_table)[j];
2189 Vccl_program_table = new_table;
2195 elt = Fmake_vector (make_int (3), Qnil);
2196 XVECTOR_DATA (elt)[0] = name;
2197 XVECTOR_DATA (elt)[1] = ccl_prog;
2198 XVECTOR_DATA (elt)[2] = resolved;
2199 XVECTOR_DATA (Vccl_program_table)[idx] = elt;
2202 Fput (name, Qccl_program_idx, make_int (idx));
2203 return make_int (idx);
2206 /* Register code conversion map.
2207 A code conversion map consists of numbers, Qt, Qnil, and Qlambda.
2208 The first element is start code point.
2209 The rest elements are mapped numbers.
2210 Symbol t means to map to an original number before mapping.
2211 Symbol nil means that the corresponding element is empty.
2212 Symbol lambda means to terminate mapping here.
2215 DEFUN ("register-code-conversion-map", Fregister_code_conversion_map,
2217 Register SYMBOL as code conversion map MAP.
2218 Return index number of the registered map.
2222 int len = XVECTOR_LENGTH (Vcode_conversion_map_vector);
2226 CHECK_SYMBOL (symbol);
2229 for (i = 0; i < len; i++)
2231 Lisp_Object slot = XVECTOR_DATA (Vcode_conversion_map_vector)[i];
2236 if (EQ (symbol, XCAR (slot)))
2240 Fput (symbol, Qcode_conversion_map, map);
2241 Fput (symbol, Qcode_conversion_map_id, idx);
2248 Lisp_Object new_vector = Fmake_vector (make_int (len * 2), Qnil);
2251 for (j = 0; j < len; j++)
2252 XVECTOR_DATA (new_vector)[j]
2253 = XVECTOR_DATA (Vcode_conversion_map_vector)[j];
2254 Vcode_conversion_map_vector = new_vector;
2258 Fput (symbol, Qcode_conversion_map, map);
2259 Fput (symbol, Qcode_conversion_map_id, idx);
2260 XVECTOR_DATA (Vcode_conversion_map_vector)[i] = Fcons (symbol, map);
2266 syms_of_mule_ccl (void)
2268 DEFSUBR (Fccl_program_p);
2269 DEFSUBR (Fccl_execute);
2270 DEFSUBR (Fccl_execute_on_string);
2271 DEFSUBR (Fregister_ccl_program);
2272 DEFSUBR (Fregister_code_conversion_map);
2276 vars_of_mule_ccl (void)
2278 staticpro (&Vccl_program_table);
2279 Vccl_program_table = Fmake_vector (make_int (32), Qnil);
2281 defsymbol (&Qccl_program, "ccl-program");
2282 defsymbol (&Qccl_program_idx, "ccl-program-idx");
2283 defsymbol (&Qcode_conversion_map, "code-conversion-map");
2284 defsymbol (&Qcode_conversion_map_id, "code-conversion-map-id");
2286 DEFVAR_LISP ("code-conversion-map-vector", &Vcode_conversion_map_vector /*
2287 Vector of code conversion maps.
2289 Vcode_conversion_map_vector = Fmake_vector (make_int (16), Qnil);
2291 DEFVAR_LISP ("font-ccl-encoder-alist", &Vfont_ccl_encoder_alist /*
2292 Alist of fontname patterns vs corresponding CCL program.
2293 Each element looks like (REGEXP . CCL-CODE),
2294 where CCL-CODE is a compiled CCL program.
2295 When a font whose name matches REGEXP is used for displaying a character,
2296 CCL-CODE is executed to calculate the code point in the font
2297 from the charset number and position code(s) of the character which are set
2298 in CCL registers R0, R1, and R2 before the execution.
2299 The code point in the font is set in CCL registers R1 and R2
2300 when the execution terminated.
2301 If the font is single-byte font, the register R2 is not used.
2303 Vfont_ccl_encoder_alist = Qnil;