X-Git-Url: http://git.chise.org/gitweb/?a=blobdiff_plain;f=info%2Fxemacs.info-16;h=60c77c2da58bd09f4e333ee54f30c29d50702be2;hb=16d0840d3eada757f529c34fddc0c2fb8f17b9de;hp=0b9d211f1087226e9ef37dbab6b6b6a12517d6cd;hpb=e641a992060dabef4609a39a7025a4712c680d5a;p=chise%2Fxemacs-chise.git diff --git a/info/xemacs.info-16 b/info/xemacs.info-16 index 0b9d211..60c77c2 100644 --- a/info/xemacs.info-16 +++ b/info/xemacs.info-16 @@ -30,6 +30,279 @@ versions, except that the sections entitled "The GNU Manifesto", translation approved by the author instead of in the original English.  +File: xemacs.info, Node: Holiday Customizing, Next: Date Display Format, Prev: Calendar Customizing, Up: Calendar Customization + +Customizing the Holidays +........................ + + Emacs knows about holidays defined by entries on one of several +lists. You can customize these lists of holidays to your own needs, +adding or deleting holidays. The lists of holidays that Emacs uses are +for general holidays (`general-holidays'), local holidays +(`local-holidays'), Christian holidays (`christian-holidays'), Hebrew +(Jewish) holidays (`hebrew-holidays'), Islamic (Moslem) holidays +(`islamic-holidays'), and other holidays (`other-holidays'). + + The general holidays are, by default, holidays common throughout the +United States. To eliminate these holidays, set `general-holidays' to +`nil'. + + There are no default local holidays (but sites may supply some). You +can set the variable `local-holidays' to any list of holidays, as +described below. + + By default, Emacs does not include all the holidays of the religions +that it knows, only those commonly found in secular calendars. For a +more extensive collection of religious holidays, you can set any (or +all) of the variables `all-christian-calendar-holidays', +`all-hebrew-calendar-holidays', or `all-islamic-calendar-holidays' to +`t'. If you want to eliminate the religious holidays, set any or all +of the corresponding variables `christian-holidays', `hebrew-holidays', +and `islamic-holidays' to `nil'. + + You can set the variable `other-holidays' to any list of holidays. +This list, normally empty, is intended for individual use. + + Each of the lists (`general-holidays', `local-holidays', +`christian-holidays', `hebrew-holidays', `islamic-holidays', and +`other-holidays') is a list of "holiday forms", each holiday form +describing a holiday (or sometimes a list of holidays). + + Here is a table of the possible kinds of holiday form. Day numbers +and month numbers count starting from 1, but "dayname" numbers count +Sunday as 0. The element STRING is always the name of the holiday, as +a string. + +`(holiday-fixed MONTH DAY STRING)' + A fixed date on the Gregorian calendar. MONTH and DAY are + numbers, STRING is the name of the holiday. + +`(holiday-float MONTH DAYNAME K STRING)' + The Kth DAYNAME in MONTH on the Gregorian calendar (DAYNAME=0 for + Sunday, and so on); negative K means count back from the end of + the month. STRING is the name of the holiday. + +`(holiday-hebrew MONTH DAY STRING)' + A fixed date on the Hebrew calendar. MONTH and DAY are numbers, + STRING is the name of the holiday. + +`(holiday-islamic MONTH DAY STRING)' + A fixed date on the Islamic calendar. MONTH and DAY are numbers, + STRING is the name of the holiday. + +`(holiday-julian MONTH DAY STRING)' + A fixed date on the Julian calendar. MONTH and DAY are numbers, + STRING is the name of the holiday. + +`(holiday-sexp SEXP STRING)' + A date calculated by the Lisp expression SEXP. The expression + should use the variable `year' to compute and return the date of a + holiday, or `nil' if the holiday doesn't happen this year. The + value of SEXP must represent the date as a list of the form + `(MONTH DAY YEAR)'. STRING is the name of the holiday. + +`(if CONDITION HOLIDAY-FORM &optional HOLIDAY-FORM)' + A holiday that happens only if CONDITION is true. + +`(FUNCTION [ARGS])' + A list of dates calculated by the function FUNCTION, called with + arguments ARGS. + + For example, suppose you want to add Bastille Day, celebrated in +France on July 14. You can do this by adding the following line to +your init file: + + (setq other-holidays '((holiday-fixed 7 14 "Bastille Day"))) + + *Note Init File::. + +The holiday form `(holiday-fixed 7 14 "Bastille Day")' specifies the +fourteenth day of the seventh month (July). + + Many holidays occur on a specific day of the week, at a specific time +of month. Here is a holiday form describing Hurricane Supplication Day, +celebrated in the Virgin Islands on the fourth Monday in August: + + (holiday-float 8 1 4 "Hurricane Supplication Day") + +Here the 8 specifies August, the 1 specifies Monday (Sunday is 0, +Tuesday is 2, and so on), and the 4 specifies the fourth occurrence in +the month (1 specifies the first occurrence, 2 the second occurrence, +-1 the last occurrence, -2 the second-to-last occurrence, and so on). + + You can specify holidays that occur on fixed days of the Hebrew, +Islamic, and Julian calendars too. For example, + + (setq other-holidays + '((holiday-hebrew 10 2 "Last day of Hanukkah") + (holiday-islamic 3 12 "Mohammed's Birthday") + (holiday-julian 4 2 "Jefferson's Birthday"))) + +adds the last day of Hanukkah (since the Hebrew months are numbered with +1 starting from Nisan), the Islamic feast celebrating Mohammed's +birthday (since the Islamic months are numbered from 1 starting with +Muharram), and Thomas Jefferson's birthday, which is 2 April 1743 on the +Julian calendar. + + To include a holiday conditionally, use either Emacs Lisp's `if' or +the `holiday-sexp' form. For example, American presidential elections +occur on the first Tuesday after the first Monday in November of years +divisible by 4: + + (holiday-sexp (if (= 0 (% year 4)) + (calendar-gregorian-from-absolute + (1+ (calendar-dayname-on-or-before + 1 (+ 6 (calendar-absolute-from-gregorian + (list 11 1 year)))))) + "US Presidential Election")) + +or + + (if (= 0 (% displayed-year 4)) + (fixed 11 + (extract-calendar-day + (calendar-gregorian-from-absolute + (1+ (calendar-dayname-on-or-before + 1 (+ 6 (calendar-absolute-from-gregorian + (list 11 1 displayed-year))))))) + "US Presidential Election")) + + Some holidays just don't fit into any of these forms because special +calculations are involved in their determination. In such cases you +must write a Lisp function to do the calculation. To include eclipses, +for example, add `(eclipses)' to `other-holidays' and write an Emacs +Lisp function `eclipses' that returns a (possibly empty) list of the +relevant Gregorian dates among the range visible in the calendar +window, with descriptive strings, like this: + + (((6 27 1991) "Lunar Eclipse") ((7 11 1991) "Solar Eclipse") ... ) + + +File: xemacs.info, Node: Date Display Format, Next: Time Display Format, Prev: Holiday Customizing, Up: Calendar Customization + +Date Display Format +................... + + You can customize the manner of displaying dates in the diary, in +mode lines, and in messages by setting `calendar-date-display-form'. +This variable holds a list of expressions that can involve the variables +`month', `day', and `year', which are all numbers in string form, and +`monthname' and `dayname', which are both alphabetic strings. In the +American style, the default value of this list is as follows: + + ((if dayname (concat dayname ", ")) monthname " " day ", " year) + +while in the European style this value is the default: + + ((if dayname (concat dayname ", ")) day " " monthname " " year) + + + The ISO standard date representation is this: + + (year "-" month "-" day) + +This specifies a typical American format: + + (month "/" day "/" (substring year -2)) + + +File: xemacs.info, Node: Time Display Format, Next: Daylight Savings, Prev: Date Display Format, Up: Calendar Customization + +Time Display Format +................... + + The calendar and diary by default display times of day in the +conventional American style with the hours from 1 through 12, minutes, +and either `am' or `pm'. If you prefer the European style, also known +in the US as military, in which the hours go from 00 to 23, you can +alter the variable `calendar-time-display-form'. This variable is a +list of expressions that can involve the variables `12-hours', +`24-hours', and `minutes', which are all numbers in string form, and +`am-pm' and `time-zone', which are both alphabetic strings. The +default value of `calendar-time-display-form' is as follows: + + (12-hours ":" minutes am-pm + (if time-zone " (") time-zone (if time-zone ")")) + +Here is a value that provides European style times: + + (24-hours ":" minutes + (if time-zone " (") time-zone (if time-zone ")")) + +gives military-style times like `21:07 (UT)' if time zone names are +defined, and times like `21:07' if they are not. + + +File: xemacs.info, Node: Daylight Savings, Next: Diary Customizing, Prev: Time Display Format, Up: Calendar Customization + +Daylight Savings Time +..................... + + Emacs understands the difference between standard time and daylight +savings time--the times given for sunrise, sunset, solstices, +equinoxes, and the phases of the moon take that into account. The rules +for daylight savings time vary from place to place and have also varied +historically from year to year. To do the job properly, Emacs needs to +know which rules to use. + + Some operating systems keep track of the rules that apply to the +place where you are; on these systems, Emacs gets the information it +needs from the system automatically. If some or all of this +information is missing, Emacs fills in the gaps with the rules +currently used in Cambridge, Massachusetts. If the resulting rules are +not what you want, you can tell Emacs the rules to use by setting +certain variables. + + If the default choice of rules is not appropriate for your location, +you can tell Emacs the rules to use by setting the variables +`calendar-daylight-savings-starts' and +`calendar-daylight-savings-ends'. Their values should be Lisp +expressions that refer to the variable `year', and evaluate to the +Gregorian date on which daylight savings time starts or (respectively) +ends, in the form of a list `(MONTH DAY YEAR)'. The values should be +`nil' if your area does not use daylight savings time. + + Emacs uses these expressions to determine the starting date of +daylight savings time for the holiday list and for correcting times of +day in the solar and lunar calculations. + + The values for Cambridge, Massachusetts are as follows: + + (calendar-nth-named-day 1 0 4 year) + (calendar-nth-named-day -1 0 10 year) + +That is, the first 0th day (Sunday) of the fourth month (April) in the +year specified by `year', and the last Sunday of the tenth month +(October) of that year. If daylight savings time were changed to start +on October 1, you would set `calendar-daylight-savings-starts' to this: + + (list 10 1 year) + + For a more complex example, suppose daylight savings time begins on +the first of Nisan on the Hebrew calendar. You should set +`calendar-daylight-savings-starts' to this value: + + (calendar-gregorian-from-absolute + (calendar-absolute-from-hebrew + (list 1 1 (+ year 3760)))) + +because Nisan is the first month in the Hebrew calendar and the Hebrew +year differs from the Gregorian year by 3760 at Nisan. + + If there is no daylight savings time at your location, or if you want +all times in standard time, set `calendar-daylight-savings-starts' and +`calendar-daylight-savings-ends' to `nil'. + + The variable `calendar-daylight-time-offset' specifies the +difference between daylight savings time and standard time, measured in +minutes. The value for Cambridge, Massachusetts is 60. + + The two variables `calendar-daylight-savings-starts-time' and +`calendar-daylight-savings-ends-time' specify the number of minutes +after midnight local time when the transition to and from daylight +savings time should occur. For Cambridge, Massachusetts both variables' +values are 120. + + File: xemacs.info, Node: Diary Customizing, Next: Hebrew/Islamic Entries, Prev: Daylight Savings, Up: Calendar Customization Customizing the Diary @@ -932,246 +1205,3 @@ based on the value of the variable `lpr-switches'. Its value should be a list of strings, each string a switch starting with `-'. For example, the value could be `("-Pfoo")' to print on printer `foo'. - -File: xemacs.info, Node: Recursive Edit, Next: Dissociated Press, Prev: Hardcopy, Up: Top - -Recursive Editing Levels -======================== - - A "recursive edit" is a situation in which you are using XEmacs -commands to perform arbitrary editing while in the middle of another -XEmacs command. For example, when you type `C-r' inside a -`query-replace', you enter a recursive edit in which you can change the -current buffer. When you exit from the recursive edit, you go back to -the `query-replace'. - - "Exiting" a recursive edit means returning to the unfinished -command, which continues execution. For example, exiting the recursive -edit requested by `C-r' in `query-replace' causes query replacing to -resume. Exiting is done with `C-M-c' (`exit-recursive-edit'). - - You can also "abort" a recursive edit. This is like exiting, but -also quits the unfinished command immediately. Use the command `C-]' -(`abort-recursive-edit') for this. *Note Quitting::. - - The mode line shows you when you are in a recursive edit by -displaying square brackets around the parentheses that always surround -the major and minor mode names. Every window's mode line shows the -square brackets, since XEmacs as a whole, rather than any particular -buffer, is in a recursive edit. - - It is possible to be in recursive edits within recursive edits. For -example, after typing `C-r' in a `query-replace', you might type a -command that entered the debugger. In such a case, two or more sets of -square brackets appear in the mode line(s). Exiting the inner -recursive edit (here with the debugger `c' command) resumes the -query-replace command where it called the debugger. After the end of -the query-replace command, you would be able to exit the first -recursive edit. Aborting exits only one level of recursive edit; it -returns to the command level of the previous recursive edit. You can -then abort that one as well. - - The command `M-x top-level' aborts all levels of recursive edits, -returning immediately to the top level command reader. - - The text you edit inside the recursive edit need not be the same text -that you were editing at top level. If the command that invokes the -recursive edit selects a different buffer first, that is the buffer you -will edit recursively. You can switch buffers within the recursive edit -in the normal manner (as long as the buffer-switching keys have not been -rebound). While you could theoretically do the rest of your editing -inside the recursive edit, including visiting files, this could have -surprising effects (such as stack overflow) from time to time. It is -best if you always exit or abort a recursive edit when you no longer -need it. - - In general, XEmacs tries to avoid using recursive edits. It is -usually preferable to allow users to switch among the possible editing -modes in any order they like. With recursive edits, the only way to get -to another state is to go "back" to the state that the recursive edit -was invoked from. - - -File: xemacs.info, Node: Dissociated Press, Next: CONX, Prev: Recursive Edit, Up: Top - -Dissociated Press -================= - - `M-x dissociated-press' is a command for scrambling a file of text -either word by word or character by character. Starting from a buffer -of straight English, it produces extremely amusing output. The input -comes from the current XEmacs buffer. Dissociated Press writes its -output in a buffer named `*Dissociation*', and redisplays that buffer -after every couple of lines (approximately) to facilitate reading it. - - `dissociated-press' asks every so often whether to continue -operating. Answer `n' to stop it. You can also stop at any time by -typing `C-g'. The dissociation output remains in the `*Dissociation*' -buffer for you to copy elsewhere if you wish. - - Dissociated Press operates by jumping at random from one point in the -buffer to another. In order to produce plausible output rather than -gibberish, it insists on a certain amount of overlap between the end of -one run of consecutive words or characters and the start of the next. -That is, if it has just printed out `president' and then decides to -jump to a different point in the file, it might spot the `ent' in -`pentagon' and continue from there, producing `presidentagon'. Long -sample texts produce the best results. - - A positive argument to `M-x dissociated-press' tells it to operate -character by character, and specifies the number of overlap characters. -A negative argument tells it to operate word by word and specifies the -number of overlap words. In this mode, whole words are treated as the -elements to be permuted, rather than characters. No argument is -equivalent to an argument of two. For your againformation, the output -goes only into the buffer `*Dissociation*'. The buffer you start with -is not changed. - - Dissociated Press produces nearly the same results as a Markov chain -based on a frequency table constructed from the sample text. It is, -however, an independent, ignoriginal invention. Dissociated Press -techniquitously copies several consecutive characters from the sample -between random choices, whereas a Markov chain would choose randomly for -each word or character. This makes for more plausible sounding results -and runs faster. - - It is a mustatement that too much use of Dissociated Press can be a -developediment to your real work. Sometimes to the point of outragedy. -And keep dissociwords out of your documentation, if you want it to be -well userenced and properbose. Have fun. Your buggestions are welcome. - - -File: xemacs.info, Node: CONX, Next: Amusements, Prev: Dissociated Press, Up: Top - -CONX -==== - - Besides producing a file of scrambled text with Dissociated Press, -you can generate random sentences by using CONX. - -`M-x conx' - Generate random sentences in the `*conx*' buffer. - -`M-x conx-buffer' - Absorb the text in the current buffer into the `conx' database. - -`M-x conx-init' - Forget the current word-frequency tree. - -`M-x conx-load' - Load a `conx' database that has been previously saved with `M-x - conx-save'. - -`M-x conx-region' - Absorb the text in the current buffer into the `conx' database. - -`M-x conx-save' - Save the current `conx' database to a file for future retrieval. - - Copy text from a buffer using `M-x conx-buffer' or `M-x conx-region' -and then type `M-x conx'. Output is continuously generated until you -type <^G>. You can save the `conx' database to a file with `M-x -conx-save', which you can retrieve with `M-x conx-load'. To clear the -database, use `M-x conx-init'. - - -File: xemacs.info, Node: Amusements, Next: Emulation, Prev: CONX, Up: Top - -Other Amusements -================ - - If you are a little bit bored, you can try `M-x hanoi'. If you are -considerably bored, give it a numeric argument. If you are very, very -bored, try an argument of 9. Sit back and watch. - - When you are frustrated, try the famous Eliza program. Just do `M-x -doctor'. End each input by typing `RET' twice. - - When you are feeling strange, type `M-x yow'. - - -File: xemacs.info, Node: Emulation, Next: Customization, Prev: Amusements, Up: Top - -Emulation -========= - - XEmacs can be programmed to emulate (more or less) most other -editors. Standard facilities can emulate these: - -Viper (a vi emulator) - In XEmacs, Viper is the preferred emulation of vi within XEmacs. - Viper is designed to allow you to take advantage of the best - features of XEmacs while still doing your basic editing in a - familiar, vi-like fashion. Viper provides various different - levels of vi emulation, from a quite complete emulation that - allows almost no access to native XEmacs commands, to an "expert" - mode that combines the most useful vi commands with the most - useful XEmacs commands. - - To start Viper, put the command - - (viper-mode) - - in your init file. *Note Init File::. - - Viper comes with a separate manual that is provided standard with - the XEmacs distribution. - -EDT (DEC VMS editor) - Turn on EDT emulation with `M-x edt-emulation-on'. `M-x - edt-emulation-off' restores normal Emacs command bindings. - - Most of the EDT emulation commands are keypad keys, and most - standard Emacs key bindings are still available. The EDT - emulation rebindings are done in the global keymap, so there is no - problem switching buffers or major modes while in EDT emulation. - -Gosling Emacs - Turn on emulation of Gosling Emacs (aka Unipress Emacs) with `M-x - set-gosmacs-bindings'. This redefines many keys, mostly on the - `C-x' and `ESC' prefixes, to work as they do in Gosmacs. `M-x - set-gnu-bindings' returns to normal XEmacs by rebinding the same - keys to the definitions they had at the time `M-x - set-gosmacs-bindings' was done. - - It is also possible to run Mocklisp code written for Gosling Emacs. - *Note Mocklisp::. - - -File: xemacs.info, Node: Customization, Next: Quitting, Prev: Emulation, Up: Top - -Customization -************* - - This chapter talks about various topics relevant to adapting the -behavior of Emacs in minor ways. - - All kinds of customization affect only the particular Emacs job that -you do them in. They are completely lost when you kill the Emacs job, -and have no effect on other Emacs jobs you may run at the same time or -later. The only way an Emacs job can affect anything outside of it is -by writing a file; in particular, the only way to make a customization -`permanent' is to put something in your init file or other appropriate -file to do the customization in each session. *Note Init File::. - -* Menu: - -* Minor Modes:: Each minor mode is one feature you can turn on - independently of any others. -* Variables:: Many Emacs commands examine Emacs variables - to decide what to do; by setting variables, - you can control their functioning. -* Keyboard Macros:: A keyboard macro records a sequence of keystrokes - to be replayed with a single command. -* Key Bindings:: The keymaps say what command each key runs. - By changing them, you can "redefine keys". -* Syntax:: The syntax table controls how words and expressions - are parsed. -* Init File:: How to write common customizations in the init file. -* Audible Bell:: Changing how Emacs sounds the bell. -* Faces:: Changing the fonts and colors of a region of text. -* Frame Components:: Controlling the presence and positions of the - menubar, toolbars, and gutters. -* X Resources:: X resources controlling various aspects of the - behavior of XEmacs. -