X-Git-Url: http://git.chise.org/gitweb/?a=blobdiff_plain;f=src%2Ffile-coding.c;h=8cacbdc6cdba1da83723b379bcbb3ea0eb710a58;hb=4f14f955e64fbf24dd2f85fc22c2976c5aad47a0;hp=b2a0c26825282c81b64d689d47ea3385a345f90c;hpb=1d9bc86590766427e2431876a50d78206a99edd5;p=chise%2Fxemacs-chise.git- diff --git a/src/file-coding.c b/src/file-coding.c index b2a0c26..8cacbdc 100644 --- a/src/file-coding.c +++ b/src/file-coding.c @@ -46,17 +46,17 @@ Lisp_Object Vcoding_system_for_write; Lisp_Object Vfile_name_coding_system; /* Table of symbols identifying each coding category. */ -Lisp_Object coding_category_symbol[CODING_CATEGORY_LAST + 1]; +Lisp_Object coding_category_symbol[CODING_CATEGORY_LAST]; struct file_coding_dump { /* Coding system currently associated with each coding category. */ - Lisp_Object coding_category_system[CODING_CATEGORY_LAST + 1]; + Lisp_Object coding_category_system[CODING_CATEGORY_LAST]; /* Table of all coding categories in decreasing order of priority. This describes a permutation of the possible coding categories. */ - int coding_category_by_priority[CODING_CATEGORY_LAST + 1]; + int coding_category_by_priority[CODING_CATEGORY_LAST]; #if defined(MULE) && !defined(UTF2000) Lisp_Object ucs_to_mule_table[65536]; @@ -64,7 +64,7 @@ struct file_coding_dump { } *fcd; static const struct lrecord_description fcd_description_1[] = { - { XD_LISP_OBJECT_ARRAY, offsetof (struct file_coding_dump, coding_category_system), CODING_CATEGORY_LAST + 1 }, + { XD_LISP_OBJECT_ARRAY, offsetof (struct file_coding_dump, coding_category_system), CODING_CATEGORY_LAST }, #if defined(MULE) && !defined(UTF2000) { XD_LISP_OBJECT_ARRAY, offsetof (struct file_coding_dump, ucs_to_mule_table), countof (fcd->ucs_to_mule_table) }, #endif @@ -1433,7 +1433,7 @@ decode_coding_category (Lisp_Object symbol) int i; CHECK_SYMBOL (symbol); - for (i = 0; i <= CODING_CATEGORY_LAST; i++) + for (i = 0; i < CODING_CATEGORY_LAST; i++) if (EQ (coding_category_symbol[i], symbol)) return i; @@ -1449,7 +1449,7 @@ Return a list of all recognized coding categories. int i; Lisp_Object list = Qnil; - for (i = CODING_CATEGORY_LAST; i >= 0; i--) + for (i = CODING_CATEGORY_LAST - 1; i >= 0; i--) list = Fcons (coding_category_symbol[i], list); return list; } @@ -1463,13 +1463,13 @@ previously. */ (list)) { - int category_to_priority[CODING_CATEGORY_LAST + 1]; + int category_to_priority[CODING_CATEGORY_LAST]; int i, j; Lisp_Object rest; /* First generate a list that maps coding categories to priorities. */ - for (i = 0; i <= CODING_CATEGORY_LAST; i++) + for (i = 0; i < CODING_CATEGORY_LAST; i++) category_to_priority[i] = -1; /* Highest priority comes from the specified list. */ @@ -1486,7 +1486,7 @@ previously. /* Now go through the existing categories by priority to retrieve the categories not yet specified and preserve their priority order. */ - for (j = 0; j <= CODING_CATEGORY_LAST; j++) + for (j = 0; j < CODING_CATEGORY_LAST; j++) { int cat = fcd->coding_category_by_priority[j]; if (category_to_priority[cat] < 0) @@ -1496,7 +1496,7 @@ previously. /* Now we need to construct the inverse of the mapping we just constructed. */ - for (i = 0; i <= CODING_CATEGORY_LAST; i++) + for (i = 0; i < CODING_CATEGORY_LAST; i++) fcd->coding_category_by_priority[category_to_priority[i]] = i; /* Phew! That was confusing. */ @@ -1511,7 +1511,7 @@ Return a list of coding categories in descending order of priority. int i; Lisp_Object list = Qnil; - for (i = CODING_CATEGORY_LAST; i >= 0; i--) + for (i = CODING_CATEGORY_LAST - 1; i >= 0; i--) list = Fcons (coding_category_symbol[fcd->coding_category_by_priority[i]], list); return list; @@ -1761,7 +1761,7 @@ coding_system_from_mask (int mask) #endif /* Look through the coding categories by priority and find the first one that is allowed. */ - for (i = 0; i <= CODING_CATEGORY_LAST; i++) + for (i = 0; i < CODING_CATEGORY_LAST; i++) { cat = fcd->coding_category_by_priority[i]; if ((mask & (1 << cat)) && @@ -1959,7 +1959,7 @@ type. Optional arg BUFFER defaults to the current buffer. #ifdef MULE decst.mask = postprocess_iso2022_mask (decst.mask); #endif - for (i = CODING_CATEGORY_LAST; i >= 0; i--) + for (i = CODING_CATEGORY_LAST - 1; i >= 0; i--) { int sys = fcd->coding_category_by_priority[i]; if (decst.mask & (1 << sys)) @@ -4503,7 +4503,48 @@ fit_to_be_escape_quoted (unsigned char c) If CHECK_INVALID_CHARSETS is non-zero, check for designation or invocation of an invalid character set and treat that as - an unrecognized escape sequence. */ + an unrecognized escape sequence. + + ******************************************************************** + + #### Strategies for error annotation and coding orthogonalization + + We really want to separate out a number of things. Conceptually, + there is a nested syntax. + + At the top level is the ISO 2022 extension syntax, including charset + designation and invocation, and certain auxiliary controls such as the + ISO 6429 direction specification. These are octet-oriented, with the + single exception (AFAIK) of the "exit Unicode" sequence which uses the + UTF's natural width (1 byte for UTF-7 and UTF-8, 2 bytes for UCS-2 and + UTF-16, and 4 bytes for UCS-4 and UTF-32). This will be treated as a + (deprecated) special case in Unicode processing. + + The middle layer is ISO 2022 character interpretation. This will depend + on the current state of the ISO 2022 registers, and assembles octets + into the character's internal representation. + + The lowest level is translating system control conventions. At present + this is restricted to newline translation, but one could imagine doing + tab conversion or line wrapping here. "Escape from Unicode" processing + would be done at this level. + + At each level the parser will verify the syntax. In the case of a + syntax error or warning (such as a redundant escape sequence that affects + no characters), the parser will take some action, typically inserting the + erroneous octets directly into the output and creating an annotation + which can be used by higher level I/O to mark the affected region. + + This should make it possible to do something sensible about separating + newline convention processing from character construction, and about + preventing ISO 2022 escape sequences from being recognized + inappropriately. + + The basic strategy will be to have octet classification tables, and + switch processing according to the table entry. + + It's possible that, by doing the processing with tables of functions or + the like, the parser can be used for both detection and translation. */ static int parse_iso2022_esc (Lisp_Object codesys, struct iso2022_decoder *iso, @@ -6221,10 +6262,10 @@ vars_of_file_coding (void) int i; fcd = xnew (struct file_coding_dump); - dumpstruct (&fcd, &fcd_description); + dump_add_root_struct_ptr (&fcd, &fcd_description); /* Initialize to something reasonable ... */ - for (i = 0; i <= CODING_CATEGORY_LAST; i++) + for (i = 0; i < CODING_CATEGORY_LAST; i++) { fcd->coding_category_system[i] = Qnil; fcd->coding_category_by_priority[i] = i; @@ -6288,7 +6329,7 @@ complex_vars_of_file_coding (void) make_lisp_hash_table (50, HASH_TABLE_NON_WEAK, HASH_TABLE_EQ); the_codesys_prop_dynarr = Dynarr_new (codesys_prop); - dumpstruct (&the_codesys_prop_dynarr, &codesys_prop_dynarr_description); + dump_add_root_struct_ptr (&the_codesys_prop_dynarr, &codesys_prop_dynarr_description); #define DEFINE_CODESYS_PROP(Prop_Type, Sym) do \ { \