/* CCL (Code Conversion Language) interpreter.
- Copyright (C) 1995, 1997 Electrotechnical Laboratory, JAPAN.
+ Copyright (C) 1995, 1997, 1998, 1999 Electrotechnical Laboratory, JAPAN.
Licensed to the Free Software Foundation.
This file is part of XEmacs.
the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
-/* Synched up with : FSF Emacs 20.2 */
+/* Synched up with : FSF Emacs 20.3.10 without ExCCL
+ * (including {Read|Write}MultibyteChar) */
#ifdef emacs
#include <config.h>
+
+#if 0
+#ifdef STDC_HEADERS
+#include <stdlib.h>
+#endif
+#endif
+
#include "lisp.h"
#include "buffer.h"
#include "mule-charset.h"
#endif /* not emacs */
+/* This contains all code conversion map available to CCL. */
+/*
+Lisp_Object Vcode_conversion_map_vector;
+*/
+
/* Alist of fontname patterns vs corresponding CCL program. */
Lisp_Object Vfont_ccl_encoder_alist;
+/* This symbol is a property which assocates with ccl program vector.
+ Ex: (get 'ccl-big5-encoder 'ccl-program) returns ccl program vector. */
+Lisp_Object Qccl_program;
+
+/* These symbols are properties which associate with code conversion
+ map and their ID respectively. */
+/*
+Lisp_Object Qcode_conversion_map;
+Lisp_Object Qcode_conversion_map_id;
+*/
+
+/* Symbols of ccl program have this property, a value of the property
+ is an index for Vccl_protram_table. */
+Lisp_Object Qccl_program_idx;
+
/* Vector of CCL program names vs corresponding program data. */
Lisp_Object Vccl_program_table;
write (reg[RRR] OPERATION reg[Rrr]);
*/
-#define CCL_Call 0x13 /* Write a constant:
+#define CCL_Call 0x13 /* Call the CCL program whose ID is
+ (CC..C).
1:CCCCCCCCCCCCCCCCCCCC000XXXXX
------------------------------
call (CC..C)
extended_command (rrr,RRR,Rrr,ARGS)
*/
+/*
+ Here after, Extended CCL Instructions.
+ Bit length of extended command is 14.
+ Therefore, the instruction code range is 0..16384(0x3fff).
+ */
+
+/* Read a multibyte characeter.
+ A code point is stored into reg[rrr]. A charset ID is stored into
+ reg[RRR]. */
+
+#define CCL_ReadMultibyteChar2 0x00 /* Read Multibyte Character
+ 1:ExtendedCOMMNDRrrRRRrrrXXXXX */
+
+/* Write a multibyte character.
+ Write a character whose code point is reg[rrr] and the charset ID
+ is reg[RRR]. */
+
+#define CCL_WriteMultibyteChar2 0x01 /* Write Multibyte Character
+ 1:ExtendedCOMMNDRrrRRRrrrXXXXX */
+
+#if 0
+/* Translate a character whose code point is reg[rrr] and the charset
+ ID is reg[RRR] by a translation table whose ID is reg[Rrr].
+
+ A translated character is set in reg[rrr] (code point) and reg[RRR]
+ (charset ID). */
+
+#define CCL_TranslateCharacter 0x02 /* Translate a multibyte character
+ 1:ExtendedCOMMNDRrrRRRrrrXXXXX */
+
+/* Translate a character whose code point is reg[rrr] and the charset
+ ID is reg[RRR] by a translation table whose ID is ARGUMENT.
+
+ A translated character is set in reg[rrr] (code point) and reg[RRR]
+ (charset ID). */
+
+#define CCL_TranslateCharacterConstTbl 0x03 /* Translate a multibyte character
+ 1:ExtendedCOMMNDRrrRRRrrrXXXXX
+ 2:ARGUMENT(Translation Table ID)
+ */
+
+/* Iterate looking up MAPs for reg[rrr] starting from the Nth (N =
+ reg[RRR]) MAP until some value is found.
+
+ Each MAP is a Lisp vector whose element is number, nil, t, or
+ lambda.
+ If the element is nil, ignore the map and proceed to the next map.
+ If the element is t or lambda, finish without changing reg[rrr].
+ If the element is a number, set reg[rrr] to the number and finish.
+
+ Detail of the map structure is descibed in the comment for
+ CCL_MapMultiple below. */
+
+#define CCL_IterateMultipleMap 0x10 /* Iterate multiple maps
+ 1:ExtendedCOMMNDXXXRRRrrrXXXXX
+ 2:NUMBER of MAPs
+ 3:MAP-ID1
+ 4:MAP-ID2
+ ...
+ */
+
+/* Map the code in reg[rrr] by MAPs starting from the Nth (N =
+ reg[RRR]) map.
+
+ MAPs are supplied in the succeeding CCL codes as follows:
+
+ When CCL program gives this nested structure of map to this command:
+ ((MAP-ID11
+ MAP-ID12
+ (MAP-ID121 MAP-ID122 MAP-ID123)
+ MAP-ID13)
+ (MAP-ID21
+ (MAP-ID211 (MAP-ID2111) MAP-ID212)
+ MAP-ID22)),
+ the compiled CCL codes has this sequence:
+ CCL_MapMultiple (CCL code of this command)
+ 16 (total number of MAPs and SEPARATORs)
+ -7 (1st SEPARATOR)
+ MAP-ID11
+ MAP-ID12
+ -3 (2nd SEPARATOR)
+ MAP-ID121
+ MAP-ID122
+ MAP-ID123
+ MAP-ID13
+ -7 (3rd SEPARATOR)
+ MAP-ID21
+ -4 (4th SEPARATOR)
+ MAP-ID211
+ -1 (5th SEPARATOR)
+ MAP_ID2111
+ MAP-ID212
+ MAP-ID22
+
+ A value of each SEPARATOR follows this rule:
+ MAP-SET := SEPARATOR [(MAP-ID | MAP-SET)]+
+ SEPARATOR := -(number of MAP-IDs and SEPARATORs in the MAP-SET)
+
+ (*)....Nest level of MAP-SET must not be over than MAX_MAP_SET_LEVEL.
+
+ When some map fails to map (i.e. it doesn't have a value for
+ reg[rrr]), the mapping is treated as identity.
+
+ The mapping is iterated for all maps in each map set (set of maps
+ separated by SEPARATOR) except in the case that lambda is
+ encountered. More precisely, the mapping proceeds as below:
+
+ At first, VAL0 is set to reg[rrr], and it is translated by the
+ first map to VAL1. Then, VAL1 is translated by the next map to
+ VAL2. This mapping is iterated until the last map is used. The
+ result of the mapping is the last value of VAL?.
+
+ But, when VALm is mapped to VALn and VALn is not a number, the
+ mapping proceed as below:
+
+ If VALn is nil, the lastest map is ignored and the mapping of VALm
+ proceed to the next map.
+
+ In VALn is t, VALm is reverted to reg[rrr] and the mapping of VALm
+ proceed to the next map.
+
+ If VALn is lambda, the whole mapping process terminates, and VALm
+ is the result of this mapping.
+
+ Each map is a Lisp vector of the following format (a) or (b):
+ (a)......[STARTPOINT VAL1 VAL2 ...]
+ (b)......[t VAL STARTPOINT ENDPOINT],
+ where
+ STARTPOINT is an offset to be used for indexing a map,
+ ENDPOINT is a maximum index number of a map,
+ VAL and VALn is a number, nil, t, or lambda.
+
+ Valid index range of a map of type (a) is:
+ STARTPOINT <= index < STARTPOINT + map_size - 1
+ Valid index range of a map of type (b) is:
+ STARTPOINT <= index < ENDPOINT */
+
+#define CCL_MapMultiple 0x11 /* Mapping by multiple code conversion maps
+ 1:ExtendedCOMMNDXXXRRRrrrXXXXX
+ 2:N-2
+ 3:SEPARATOR_1 (< 0)
+ 4:MAP-ID_1
+ 5:MAP-ID_2
+ ...
+ M:SEPARATOR_x (< 0)
+ M+1:MAP-ID_y
+ ...
+ N:SEPARATOR_z (< 0)
+ */
+
+#define MAX_MAP_SET_LEVEL 20
+
+typedef struct
+{
+ int rest_length;
+ int orig_val;
+} tr_stack;
+
+static tr_stack mapping_stack[MAX_MAP_SET_LEVEL];
+static tr_stack *mapping_stack_pointer;
+#endif
+
+#define PUSH_MAPPING_STACK(restlen, orig) \
+{ \
+ mapping_stack_pointer->rest_length = (restlen); \
+ mapping_stack_pointer->orig_val = (orig); \
+ mapping_stack_pointer++; \
+}
+
+#define POP_MAPPING_STACK(restlen, orig) \
+{ \
+ mapping_stack_pointer--; \
+ (restlen) = mapping_stack_pointer->rest_length; \
+ (orig) = mapping_stack_pointer->orig_val; \
+} \
+
+#define CCL_MapSingle 0x12 /* Map by single code conversion map
+ 1:ExtendedCOMMNDXXXRRRrrrXXXXX
+ 2:MAP-ID
+ ------------------------------
+ Map reg[rrr] by MAP-ID.
+ If some valid mapping is found,
+ set reg[rrr] to the result,
+ else
+ set reg[RRR] to -1.
+ */
/* CCL arithmetic/logical operators. */
#define CCL_PLUS 0x00 /* X = Y + Z */
#define CCL_GE 0x14 /* X = (X >= Y) */
#define CCL_NE 0x15 /* X = (X != Y) */
-#define CCL_ENCODE_SJIS 0x16 /* X = HIGHER_BYTE (SJIS (Y, Z))
- r[7] = LOWER_BYTE (SJIS (Y, Z) */
-#define CCL_DECODE_SJIS 0x17 /* X = HIGHER_BYTE (DE-SJIS (Y, Z))
+#define CCL_DECODE_SJIS 0x16 /* X = HIGHER_BYTE (DE-SJIS (Y, Z))
r[7] = LOWER_BYTE (DE-SJIS (Y, Z)) */
+#define CCL_ENCODE_SJIS 0x17 /* X = HIGHER_BYTE (SJIS (Y, Z))
+ r[7] = LOWER_BYTE (SJIS (Y, Z) */
-/* Macros for exit status of CCL program. */
-#define CCL_STAT_SUCCESS 0 /* Terminated successfully. */
-#define CCL_STAT_SUSPEND 1 /* Terminated because of empty input
- buffer or full output buffer. */
-#define CCL_STAT_INVALID_CMD 2 /* Terminated because of invalid
- command. */
-#define CCL_STAT_QUIT 3 /* Terminated because of quit. */
+/* Suspend CCL program because of reading from empty input buffer or
+ writing to full output buffer. When this program is resumed, the
+ same I/O command is executed. */
+#define CCL_SUSPEND(stat) \
+ do { \
+ ic--; \
+ ccl->status = stat; \
+ goto ccl_finish; \
+ } while (0)
+
+/* Terminate CCL program because of invalid command. Should not occur
+ in the normal case. */
+#define CCL_INVALID_CMD \
+ do { \
+ ccl->status = CCL_STAT_INVALID_CMD; \
+ goto ccl_error_handler; \
+ } while (0)
/* Encode one character CH to multibyte form and write to the current
output buffer. If CH is less than 256, CH is written as is. */
/* Read one byte from the current input buffer into Rth register. */
#define CCL_READ_CHAR(r) do { \
- if (!src) \
+ if (!src && !ccl->last_block) \
{ \
ccl->status = CCL_STAT_INVALID_CMD; \
goto ccl_error_handler; \
else if (ccl->last_block) \
{ \
ic = ccl->eof_ic; \
- goto ccl_finish; \
+ goto ccl_repeat; \
} \
else \
/* Suspend CCL program because of \
same I/O command is executed. */ \
{ \
ic--; \
- ccl->status = CCL_STAT_SUSPEND; \
+ ccl->status = CCL_STAT_SUSPEND_BY_SRC; \
goto ccl_finish; \
} \
} while (0)
int ic; /* Instruction Counter. */
};
+/* For the moment, we only support depth 256 of stack. */
+static struct ccl_prog_stack ccl_prog_stack_struct[256];
+
int
-ccl_driver (struct ccl_program *ccl, CONST unsigned char *source, unsigned_char_dynarr *destination, int src_bytes, int *consumed, int conversion_mode)
+ccl_driver (struct ccl_program *ccl, CONST unsigned char *source,
+ unsigned_char_dynarr *destination, int src_bytes,
+ int *consumed, int conversion_mode)
{
int *reg = ccl->reg;
int ic = ccl->ic;
Lisp_Object *ccl_prog = ccl->prog;
CONST unsigned char *src = source, *src_end = src + src_bytes;
int jump_address = 0; /* shut up the compiler */
-
int i, j, op;
- int stack_idx = 0;
- /* For the moment, we only support depth 256 of stack. */
- struct ccl_prog_stack ccl_prog_stack_struct[256];
+ int stack_idx = ccl->stack_idx;
+ /* Instruction counter of the current CCL code. */
+ int this_ic;
if (ic >= ccl->eof_ic)
ic = CCL_HEADER_MAIN;
+#if 0 /* not for XEmacs ? */
+ if (ccl->buf_magnification ==0) /* We can't produce any bytes. */
+ dst = NULL;
+#endif
+
#ifdef CCL_DEBUG
ccl_backtrace_idx = 0;
#endif
for (;;)
{
+ ccl_repeat:
#ifdef CCL_DEBUG
ccl_backtrace_table[ccl_backtrace_idx++] = ic;
if (ccl_backtrace_idx >= CCL_DEBUG_BACKTRACE_LEN)
break;
}
+ this_ic = ic;
code = XINT (ccl_prog[ic]); ic++;
field1 = code >> 8;
field2 = (code & 0xFF) >> 5;
#define RRR (field1 & 7)
#define Rrr ((field1 >> 3) & 7)
#define ADDR field1
+#define EXCMD (field1 >> 6)
switch (code & 0x1F)
{
ic = ccl_prog_stack_struct[stack_idx].ic;
break;
}
+ if (src)
+ src = src_end;
+ /* ccl->ic should points to this command code again to
+ suppress further processing. */
+ ic--;
/* Terminate CCL program successfully. */
ccl->status = CCL_STAT_SUCCESS;
- ccl->ic = CCL_HEADER_MAIN;
goto ccl_finish;
case CCL_ExprSelfConst: /* 00000OPERATION000000rrrXXXXX */
case CCL_LE: reg[rrr] = i <= j; break;
case CCL_GE: reg[rrr] = i >= j; break;
case CCL_NE: reg[rrr] = i != j; break;
- case CCL_ENCODE_SJIS: ENCODE_SJIS (i, j, reg[rrr], reg[7]); break;
case CCL_DECODE_SJIS: DECODE_SJIS (i, j, reg[rrr], reg[7]); break;
+ case CCL_ENCODE_SJIS: ENCODE_SJIS (i, j, reg[rrr], reg[7]); break;
default:
ccl->status = CCL_STAT_INVALID_CMD;
goto ccl_error_handler;
ic = jump_address;
break;
+ case CCL_Extention:
+ switch (EXCMD)
+ {
+ case CCL_ReadMultibyteChar2:
+ if (!src)
+ CCL_INVALID_CMD;
+
+ do {
+ if (src >= src_end)
+ {
+ src++;
+ goto ccl_read_multibyte_character_suspend;
+ }
+
+ i = *src++;
+#if 0
+ if (i == LEADING_CODE_COMPOSITION)
+ {
+ if (src >= src_end)
+ goto ccl_read_multibyte_character_suspend;
+ if (*src == 0xFF)
+ {
+ ccl->private_state = COMPOSING_WITH_RULE_HEAD;
+ src++;
+ }
+ else
+ ccl->private_state = COMPOSING_NO_RULE_HEAD;
+
+ continue;
+ }
+ if (ccl->private_state != COMPOSING_NO)
+ {
+ /* composite character */
+ if (i < 0xA0)
+ ccl->private_state = COMPOSING_NO;
+ else
+ {
+ if (COMPOSING_WITH_RULE_RULE == ccl->private_state)
+ {
+ ccl->private_state = COMPOSING_WITH_RULE_HEAD;
+ continue;
+ }
+ else if (COMPOSING_WITH_RULE_HEAD == ccl->private_state)
+ ccl->private_state = COMPOSING_WITH_RULE_RULE;
+
+ if (i == 0xA0)
+ {
+ if (src >= src_end)
+ goto ccl_read_multibyte_character_suspend;
+ i = *src++ & 0x7F;
+ }
+ else
+ i -= 0x20;
+ }
+ }
+#endif
+
+ if (i < 0x80)
+ {
+ /* ASCII */
+ reg[rrr] = i;
+ reg[RRR] = LEADING_BYTE_ASCII;
+ }
+ else if (i <= MAX_LEADING_BYTE_OFFICIAL_1)
+ {
+ if (src >= src_end)
+ goto ccl_read_multibyte_character_suspend;
+ reg[RRR] = i;
+ reg[rrr] = (*src++ & 0x7F);
+ }
+ else if (i <= MAX_LEADING_BYTE_OFFICIAL_2)
+ {
+ if ((src + 1) >= src_end)
+ goto ccl_read_multibyte_character_suspend;
+ reg[RRR] = i;
+ i = (*src++ & 0x7F);
+ reg[rrr] = ((i << 7) | (*src & 0x7F));
+ src++;
+ }
+ else if (i == PRE_LEADING_BYTE_PRIVATE_1)
+ {
+ if ((src + 1) >= src_end)
+ goto ccl_read_multibyte_character_suspend;
+ reg[RRR] = *src++;
+ reg[rrr] = (*src++ & 0x7F);
+ }
+ else if (i == PRE_LEADING_BYTE_PRIVATE_2)
+ {
+ if ((src + 2) >= src_end)
+ goto ccl_read_multibyte_character_suspend;
+ reg[RRR] = *src++;
+ i = (*src++ & 0x7F);
+ reg[rrr] = ((i << 7) | (*src & 0x7F));
+ src++;
+ }
+ else
+ {
+ /* INVALID CODE. Return a single byte character. */
+ reg[RRR] = LEADING_BYTE_ASCII;
+ reg[rrr] = i;
+ }
+ break;
+ } while (1);
+ break;
+
+ ccl_read_multibyte_character_suspend:
+ src--;
+ if (ccl->last_block)
+ {
+ ic = ccl->eof_ic;
+ goto ccl_repeat;
+ }
+ else
+ CCL_SUSPEND (CCL_STAT_SUSPEND_BY_SRC);
+
+ break;
+
+ case CCL_WriteMultibyteChar2:
+ i = reg[RRR]; /* charset */
+ if (i == LEADING_BYTE_ASCII)
+ i = reg[rrr] & 0xFF;
+#if 0
+ else if (i == CHARSET_COMPOSITION)
+ i = MAKE_COMPOSITE_CHAR (reg[rrr]);
+#endif
+ else if (REP_BYTES_BY_FIRST_BYTE (i) == 1)
+ i = ((i - 0x70) << 7) | (reg[rrr] & 0x7F);
+ else if (i < MIN_LEADING_BYTE_OFFICIAL_2)
+ i = ((i - 0x8F) << 14) | reg[rrr];
+ else
+ i = ((i - 0xE0) << 14) | reg[rrr];
+
+ CCL_WRITE_CHAR (i);
+
+ break;
+
+#if 0
+ case CCL_TranslateCharacter:
+ i = reg[RRR]; /* charset */
+ if (i == LEADING_BYTE_ASCII)
+ i = reg[rrr];
+ else if (i == CHARSET_COMPOSITION)
+ {
+ reg[RRR] = -1;
+ break;
+ }
+ else if (CHARSET_DIMENSION (i) == 1)
+ i = ((i - 0x70) << 7) | (reg[rrr] & 0x7F);
+ else if (i < MIN_LEADING_BYTE_OFFICIAL_2)
+ i = ((i - 0x8F) << 14) | (reg[rrr] & 0x3FFF);
+ else
+ i = ((i - 0xE0) << 14) | (reg[rrr] & 0x3FFF);
+
+ op = translate_char (GET_TRANSLATION_TABLE (reg[Rrr]),
+ i, -1, 0, 0);
+ SPLIT_CHAR (op, reg[RRR], i, j);
+ if (j != -1)
+ i = (i << 7) | j;
+
+ reg[rrr] = i;
+ break;
+
+ case CCL_TranslateCharacterConstTbl:
+ op = XINT (ccl_prog[ic]); /* table */
+ ic++;
+ i = reg[RRR]; /* charset */
+ if (i == LEADING_BYTE_ASCII)
+ i = reg[rrr];
+ else if (i == CHARSET_COMPOSITION)
+ {
+ reg[RRR] = -1;
+ break;
+ }
+ else if (CHARSET_DIMENSION (i) == 1)
+ i = ((i - 0x70) << 7) | (reg[rrr] & 0x7F);
+ else if (i < MIN_LEADING_BYTE_OFFICIAL_2)
+ i = ((i - 0x8F) << 14) | (reg[rrr] & 0x3FFF);
+ else
+ i = ((i - 0xE0) << 14) | (reg[rrr] & 0x3FFF);
+
+ op = translate_char (GET_TRANSLATION_TABLE (op), i, -1, 0, 0);
+ SPLIT_CHAR (op, reg[RRR], i, j);
+ if (j != -1)
+ i = (i << 7) | j;
+
+ reg[rrr] = i;
+ break;
+
+ case CCL_IterateMultipleMap:
+ {
+ Lisp_Object map, content, attrib, value;
+ int point, size, fin_ic;
+
+ j = XINT (ccl_prog[ic++]); /* number of maps. */
+ fin_ic = ic + j;
+ op = reg[rrr];
+ if ((j > reg[RRR]) && (j >= 0))
+ {
+ ic += reg[RRR];
+ i = reg[RRR];
+ }
+ else
+ {
+ reg[RRR] = -1;
+ ic = fin_ic;
+ break;
+ }
+
+ for (;i < j;i++)
+ {
+
+ size = XVECTOR (Vcode_conversion_map_vector)->size;
+ point = XINT (ccl_prog[ic++]);
+ if (point >= size) continue;
+ map =
+ XVECTOR (Vcode_conversion_map_vector)->contents[point];
+
+ /* Check map varidity. */
+ if (!CONSP (map)) continue;
+ map = XCONS(map)->cdr;
+ if (!VECTORP (map)) continue;
+ size = XVECTOR (map)->size;
+ if (size <= 1) continue;
+
+ content = XVECTOR (map)->contents[0];
+
+ /* check map type,
+ [STARTPOINT VAL1 VAL2 ...] or
+ [t ELELMENT STARTPOINT ENDPOINT] */
+ if (NUMBERP (content))
+ {
+ point = XUINT (content);
+ point = op - point + 1;
+ if (!((point >= 1) && (point < size))) continue;
+ content = XVECTOR (map)->contents[point];
+ }
+ else if (EQ (content, Qt))
+ {
+ if (size != 4) continue;
+ if ((op >= XUINT (XVECTOR (map)->contents[2]))
+ && (op < XUINT (XVECTOR (map)->contents[3])))
+ content = XVECTOR (map)->contents[1];
+ else
+ continue;
+ }
+ else
+ continue;
+
+ if (NILP (content))
+ continue;
+ else if (NUMBERP (content))
+ {
+ reg[RRR] = i;
+ reg[rrr] = XINT(content);
+ break;
+ }
+ else if (EQ (content, Qt) || EQ (content, Qlambda))
+ {
+ reg[RRR] = i;
+ break;
+ }
+ else if (CONSP (content))
+ {
+ attrib = XCONS (content)->car;
+ value = XCONS (content)->cdr;
+ if (!NUMBERP (attrib) || !NUMBERP (value))
+ continue;
+ reg[RRR] = i;
+ reg[rrr] = XUINT (value);
+ break;
+ }
+ }
+ if (i == j)
+ reg[RRR] = -1;
+ ic = fin_ic;
+ }
+ break;
+
+ case CCL_MapMultiple:
+ {
+ Lisp_Object map, content, attrib, value;
+ int point, size, map_vector_size;
+ int map_set_rest_length, fin_ic;
+
+ map_set_rest_length =
+ XINT (ccl_prog[ic++]); /* number of maps and separators. */
+ fin_ic = ic + map_set_rest_length;
+ if ((map_set_rest_length > reg[RRR]) && (reg[RRR] >= 0))
+ {
+ ic += reg[RRR];
+ i = reg[RRR];
+ map_set_rest_length -= i;
+ }
+ else
+ {
+ ic = fin_ic;
+ reg[RRR] = -1;
+ break;
+ }
+ mapping_stack_pointer = mapping_stack;
+ op = reg[rrr];
+ PUSH_MAPPING_STACK (0, op);
+ reg[RRR] = -1;
+ map_vector_size = XVECTOR (Vcode_conversion_map_vector)->size;
+ for (;map_set_rest_length > 0;i++, map_set_rest_length--)
+ {
+ point = XINT(ccl_prog[ic++]);
+ if (point < 0)
+ {
+ point = -point;
+ if (mapping_stack_pointer
+ >= &mapping_stack[MAX_MAP_SET_LEVEL])
+ {
+ CCL_INVALID_CMD;
+ }
+ PUSH_MAPPING_STACK (map_set_rest_length - point,
+ reg[rrr]);
+ map_set_rest_length = point + 1;
+ reg[rrr] = op;
+ continue;
+ }
+
+ if (point >= map_vector_size) continue;
+ map = (XVECTOR (Vcode_conversion_map_vector)
+ ->contents[point]);
+
+ /* Check map varidity. */
+ if (!CONSP (map)) continue;
+ map = XCONS (map)->cdr;
+ if (!VECTORP (map)) continue;
+ size = XVECTOR (map)->size;
+ if (size <= 1) continue;
+
+ content = XVECTOR (map)->contents[0];
+
+ /* check map type,
+ [STARTPOINT VAL1 VAL2 ...] or
+ [t ELEMENT STARTPOINT ENDPOINT] */
+ if (NUMBERP (content))
+ {
+ point = XUINT (content);
+ point = op - point + 1;
+ if (!((point >= 1) && (point < size))) continue;
+ content = XVECTOR (map)->contents[point];
+ }
+ else if (EQ (content, Qt))
+ {
+ if (size != 4) continue;
+ if ((op >= XUINT (XVECTOR (map)->contents[2])) &&
+ (op < XUINT (XVECTOR (map)->contents[3])))
+ content = XVECTOR (map)->contents[1];
+ else
+ continue;
+ }
+ else
+ continue;
+
+ if (NILP (content))
+ continue;
+ else if (NUMBERP (content))
+ {
+ op = XINT (content);
+ reg[RRR] = i;
+ i += map_set_rest_length;
+ POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
+ }
+ else if (CONSP (content))
+ {
+ attrib = XCONS (content)->car;
+ value = XCONS (content)->cdr;
+ if (!NUMBERP (attrib) || !NUMBERP (value))
+ continue;
+ reg[RRR] = i;
+ op = XUINT (value);
+ i += map_set_rest_length;
+ POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
+ }
+ else if (EQ (content, Qt))
+ {
+ reg[RRR] = i;
+ op = reg[rrr];
+ i += map_set_rest_length;
+ POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
+ }
+ else if (EQ (content, Qlambda))
+ {
+ break;
+ }
+ else
+ CCL_INVALID_CMD;
+ }
+ ic = fin_ic;
+ }
+ reg[rrr] = op;
+ break;
+
+ case CCL_MapSingle:
+ {
+ Lisp_Object map, attrib, value, content;
+ int size, point;
+ j = XINT (ccl_prog[ic++]); /* map_id */
+ op = reg[rrr];
+ if (j >= XVECTOR (Vcode_conversion_map_vector)->size)
+ {
+ reg[RRR] = -1;
+ break;
+ }
+ map = XVECTOR (Vcode_conversion_map_vector)->contents[j];
+ if (!CONSP (map))
+ {
+ reg[RRR] = -1;
+ break;
+ }
+ map = XCONS(map)->cdr;
+ if (!VECTORP (map))
+ {
+ reg[RRR] = -1;
+ break;
+ }
+ size = XVECTOR (map)->size;
+ point = XUINT (XVECTOR (map)->contents[0]);
+ point = op - point + 1;
+ reg[RRR] = 0;
+ if ((size <= 1) ||
+ (!((point >= 1) && (point < size))))
+ reg[RRR] = -1;
+ else
+ {
+ content = XVECTOR (map)->contents[point];
+ if (NILP (content))
+ reg[RRR] = -1;
+ else if (NUMBERP (content))
+ reg[rrr] = XINT (content);
+ else if (EQ (content, Qt))
+ reg[RRR] = i;
+ else if (CONSP (content))
+ {
+ attrib = XCONS (content)->car;
+ value = XCONS (content)->cdr;
+ if (!NUMBERP (attrib) || !NUMBERP (value))
+ continue;
+ reg[rrr] = XUINT(value);
+ break;
+ }
+ else
+ reg[RRR] = -1;
+ }
+ }
+ break;
+#endif
+
+ default:
+ CCL_INVALID_CMD;
+ }
+ break;
+
default:
ccl->status = CCL_STAT_INVALID_CMD;
goto ccl_error_handler;
there. */
char msg[256];
+#if 0 /* not for XEmacs ? */
+ if (!dst)
+ dst = destination;
+#endif
+
switch (ccl->status)
{
/* Terminate CCL program because of invalid command.
Should not occur in the normal case. */
case CCL_STAT_INVALID_CMD:
sprintf(msg, "\nCCL: Invalid command %x (ccl_code = %x) at %d.",
- code & 0x1F, code, ic);
+ code & 0x1F, code, this_ic);
#ifdef CCL_DEBUG
{
int i = ccl_backtrace_idx - 1;
sprintf(msg, " %d", ccl_backtrace_table[i]);
Dynarr_add_many (destination, (unsigned char *) msg, strlen (msg));
}
+ goto ccl_finish;
}
#endif
- goto ccl_finish;
+ break;
case CCL_STAT_QUIT:
sprintf(msg, "\nCCL: Quited.");
ccl_finish:
ccl->ic = ic;
+ ccl->stack_idx = stack_idx;
+ ccl->prog = ccl_prog;
if (consumed) *consumed = src - source;
if (destination)
return Dynarr_length (destination);
}
/* Setup fields of the structure pointed by CCL appropriately for the
- execution of compiled CCL code in VEC (vector of integer). */
+ execution of compiled CCL code in VEC (vector of integer).
+ If VEC is nil, we skip setting ups based on VEC. */
void
setup_ccl_program (struct ccl_program *ccl, Lisp_Object vec)
{
int i;
- ccl->size = XVECTOR_LENGTH (vec);
- ccl->prog = XVECTOR_DATA (vec);
+ if (VECTORP (vec))
+ {
+ ccl->size = XVECTOR_LENGTH (vec);
+ ccl->prog = XVECTOR_DATA (vec);
+ ccl->eof_ic = XINT (XVECTOR_DATA (vec)[CCL_HEADER_EOF]);
+ ccl->buf_magnification = XINT (XVECTOR_DATA (vec)[CCL_HEADER_BUF_MAG]);
+ }
ccl->ic = CCL_HEADER_MAIN;
- ccl->eof_ic = XINT (XVECTOR_DATA (vec)[CCL_HEADER_EOF]);
- ccl->buf_magnification = XINT (XVECTOR_DATA (vec)[CCL_HEADER_BUF_MAG]);
for (i = 0; i < 8; i++)
ccl->reg[i] = 0;
ccl->last_block = 0;
+ ccl->private_state = 0;
ccl->status = 0;
+ ccl->stack_idx = 0;
}
+/* Resolve symbols in the specified CCL code (Lisp vector). This
+ function converts symbols of code conversion maps and character
+ translation tables embeded in the CCL code into their ID numbers. */
+
+Lisp_Object
+resolve_symbol_ccl_program (Lisp_Object ccl)
+{
+ int i, veclen;
+ Lisp_Object result, contents /*, prop */;
+
+ result = ccl;
+ veclen = XVECTOR_LENGTH (result);
+
+ /* Set CCL program's table ID */
+ for (i = 0; i < veclen; i++)
+ {
+ contents = XVECTOR_DATA (result)[i];
+ if (SYMBOLP (contents))
+ {
+ if (EQ(result, ccl))
+ result = Fcopy_sequence (ccl);
+
+#if 0
+ prop = Fget (contents, Qtranslation_table_id);
+ if (NUMBERP (prop))
+ {
+ XVECTOR_DATA (result)[i] = prop;
+ continue;
+ }
+ prop = Fget (contents, Qcode_conversion_map_id);
+ if (NUMBERP (prop))
+ {
+ XVECTOR_DATA (result)[i] = prop;
+ continue;
+ }
+ prop = Fget (contents, Qccl_program_idx);
+ if (NUMBERP (prop))
+ {
+ XVECTOR_DATA (result)[i] = prop;
+ continue;
+ }
+#endif
+ }
+ }
+
+ return result;
+}
+
+
#ifdef emacs
DEFUN ("ccl-execute", Fccl_execute, 2, 2, 0, /*
Execute CCL-PROGRAM with registers initialized by REGISTERS.
-CCL-PROGRAM is a compiled code generated by `ccl-compile',
- no I/O commands should appear in the CCL program.
+
+CCL-PROGRAM is a symbol registered by register-ccl-program,
+or a compiled code generated by `ccl-compile' (for backward compatibility,
+in this case, the execution is slower).
+No I/O commands should appear in CCL-PROGRAM.
+
REGISTERS is a vector of [R0 R1 ... R7] where RN is an initial value
of Nth register.
+
As side effect, each element of REGISTER holds the value of
corresponding register after the execution.
*/
{
struct ccl_program ccl;
int i;
+ Lisp_Object ccl_id;
+
+ if ((SYMBOLP (ccl_prog)) &&
+ (!NILP (ccl_id = Fget (ccl_prog, Qccl_program_idx, Qnil))))
+ {
+ ccl_prog = XVECTOR_DATA (Vccl_program_table)[XUINT (ccl_id)];
+ CHECK_LIST (ccl_prog);
+ ccl_prog = XCDR (ccl_prog);
+ CHECK_VECTOR (ccl_prog);
+ }
+ else
+ {
+ CHECK_VECTOR (ccl_prog);
+ ccl_prog = resolve_symbol_ccl_program (ccl_prog);
+ }
- CHECK_VECTOR (ccl_prog);
CHECK_VECTOR (reg);
if (XVECTOR_LENGTH (reg) != 8)
- signal_simple_error ("Vector should be of length 8", reg);
+ error ("Invalid length of vector REGISTERS");
setup_ccl_program (&ccl, ccl_prog);
for (i = 0; i < 8; i++)
DEFUN ("ccl-execute-on-string", Fccl_execute_on_string, 3, 4, 0, /*
Execute CCL-PROGRAM with initial STATUS on STRING.
-CCL-PROGRAM is a compiled code generated by `ccl-compile'.
+
+CCL-PROGRAM is a symbol registered by register-ccl-program,
+or a compiled code generated by `ccl-compile' (for backward compatibility,
+in this case, the execution is slower).
+
Read buffer is set to STRING, and write buffer is allocated automatically.
+
+If IC is nil, it is initialized to head of the CCL program.\n\
STATUS is a vector of [R0 R1 ... R7 IC], where
R0..R7 are initial values of corresponding registers,
IC is the instruction counter specifying from where to start the program.
If R0..R7 are nil, they are initialized to 0.
If IC is nil, it is initialized to head of the CCL program.
-Returns the contents of write buffer as a string,
- and as side effect, STATUS is updated.
+
If optional 4th arg CONTINUE is non-nil, keep IC on read operation
when read buffer is exausted, else, IC is always set to the end of
CCL-PROGRAM on exit.
+
+It returns the contents of write buffer as a string,
+ and as side effect, STATUS is updated.
*/
(ccl_prog, status, str, contin))
{
int i, produced;
unsigned_char_dynarr *outbuf;
struct gcpro gcpro1, gcpro2, gcpro3;
+ Lisp_Object ccl_id;
+
+ if ((SYMBOLP (ccl_prog)) &&
+ (!NILP (ccl_id = Fget (ccl_prog, Qccl_program_idx, Qnil))))
+ {
+ ccl_prog = XVECTOR (Vccl_program_table)->contents[XUINT (ccl_id)];
+ CHECK_LIST (ccl_prog);
+ ccl_prog = XCDR (ccl_prog);
+ CHECK_VECTOR (ccl_prog);
+ }
+ else
+ {
+ CHECK_VECTOR (ccl_prog);
+ ccl_prog = resolve_symbol_ccl_program (ccl_prog);
+ }
- CHECK_VECTOR (ccl_prog);
CHECK_VECTOR (status);
if (XVECTOR_LENGTH (status) != 9)
signal_simple_error ("Vector should be of length 9", status);
Dynarr_free (outbuf);
QUIT;
if (ccl.status != CCL_STAT_SUCCESS
- && ccl.status != CCL_STAT_SUSPEND)
+ && ccl.status != CCL_STAT_SUSPEND_BY_SRC
+ && ccl.status != CCL_STAT_SUSPEND_BY_DST)
error ("Error in CCL program at %dth code", ccl.ic);
return val;
CHECK_SYMBOL (name);
if (!NILP (ccl_prog))
- CHECK_VECTOR (ccl_prog);
+ {
+ CHECK_VECTOR (ccl_prog);
+ ccl_prog = resolve_symbol_ccl_program (ccl_prog);
+ }
for (i = 0; i < len; i++)
{
}
XVECTOR_DATA (Vccl_program_table)[i] = Fcons (name, ccl_prog);
+ Fput (name, Qccl_program_idx, make_int (i));
return make_int (i);
}
+#if 0
+/* Register code conversion map.
+ A code conversion map consists of numbers, Qt, Qnil, and Qlambda.
+ The first element is start code point.
+ The rest elements are mapped numbers.
+ Symbol t means to map to an original number before mapping.
+ Symbol nil means that the corresponding element is empty.
+ Symbol lambda menas to terminate mapping here.
+*/
+
+DEFUN ("register-code-conversion-map", Fregister_code_conversion_map,
+ Sregister_code_conversion_map,
+ 2, 2, 0,
+ "Register SYMBOL as code conversion map MAP.\n\
+Return index number of the registered map.")
+ (symbol, map)
+ Lisp_Object symbol, map;
+{
+ int len = XVECTOR (Vcode_conversion_map_vector)->size;
+ int i;
+ Lisp_Object index;
+
+ CHECK_SYMBOL (symbol, 0);
+ CHECK_VECTOR (map, 1);
+
+ for (i = 0; i < len; i++)
+ {
+ Lisp_Object slot = XVECTOR (Vcode_conversion_map_vector)->contents[i];
+
+ if (!CONSP (slot))
+ break;
+
+ if (EQ (symbol, XCONS (slot)->car))
+ {
+ index = make_int (i);
+ XCONS (slot)->cdr = map;
+ Fput (symbol, Qcode_conversion_map, map);
+ Fput (symbol, Qcode_conversion_map_id, index);
+ return index;
+ }
+ }
+
+ if (i == len)
+ {
+ Lisp_Object new_vector = Fmake_vector (make_int (len * 2), Qnil);
+ int j;
+
+ for (j = 0; j < len; j++)
+ XVECTOR (new_vector)->contents[j]
+ = XVECTOR (Vcode_conversion_map_vector)->contents[j];
+ Vcode_conversion_map_vector = new_vector;
+ }
+
+ index = make_int (i);
+ Fput (symbol, Qcode_conversion_map, map);
+ Fput (symbol, Qcode_conversion_map_id, index);
+ XVECTOR (Vcode_conversion_map_vector)->contents[i] = Fcons (symbol, map);
+ return index;
+}
+#endif
+
+
void
syms_of_mule_ccl (void)
{
DEFSUBR (Fccl_execute);
DEFSUBR (Fccl_execute_on_string);
DEFSUBR (Fregister_ccl_program);
+#if 0
+ DEFSUBR (&Fregister_code_conversion_map);
+#endif
}
void
staticpro (&Vccl_program_table);
Vccl_program_table = Fmake_vector (make_int (32), Qnil);
+ Qccl_program = intern ("ccl-program");
+ staticpro (&Qccl_program);
+
+ Qccl_program_idx = intern ("ccl-program-idx");
+ staticpro (&Qccl_program_idx);
+
+#if 0
+ Qcode_conversion_map = intern ("code-conversion-map");
+ staticpro (&Qcode_conversion_map);
+
+ Qcode_conversion_map_id = intern ("code-conversion-map-id");
+ staticpro (&Qcode_conversion_map_id);
+
+ DEFVAR_LISP ("code-conversion-map-vector", &Vcode_conversion_map_vector /*
+Vector of code conversion maps.*/ );
+ Vcode_conversion_map_vector = Fmake_vector (make_int (16), Qnil);
+#endif
+
DEFVAR_LISP ("font-ccl-encoder-alist", &Vfont_ccl_encoder_alist /*
Alist of fontname patterns vs corresponding CCL program.
Each element looks like (REGEXP . CCL-CODE),