0029611c09ce2fa976c2b246209a5e62b46d780f
[chise/xemacs-chise.git.1] / src / mule-ccl.c
1 /* CCL (Code Conversion Language) interpreter.
2    Copyright (C) 1995, 1997 Electrotechnical Laboratory, JAPAN.
3    Licensed to the Free Software Foundation.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING.  If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA.  */
21
22 /* Synched up with : FSF Emacs 21.0.90 except TranslateCharacter */
23
24 #ifdef emacs
25 #include <config.h>
26 #endif
27
28 #include <stdio.h>
29
30 #ifdef emacs
31
32 #include "lisp.h"
33 #include "buffer.h"
34 #include "mule-charset.h"
35 #include "mule-ccl.h"
36 #include "file-coding.h"
37
38 #else  /* not emacs */
39
40 #include "mulelib.h"
41
42 #endif /* not emacs */
43
44 /* This contains all code conversion map available to CCL.  */
45 Lisp_Object Vcode_conversion_map_vector;
46
47 /* Alist of fontname patterns vs corresponding CCL program.  */
48 Lisp_Object Vfont_ccl_encoder_alist;
49
50 /* This symbol is a property which associates with ccl program vector.
51    Ex: (get 'ccl-big5-encoder 'ccl-program) returns ccl program vector.  */
52 Lisp_Object Qccl_program;
53
54 /* These symbols are properties which associate with code conversion
55    map and their ID respectively.  */
56 Lisp_Object Qcode_conversion_map;
57 Lisp_Object Qcode_conversion_map_id;
58
59 /* Symbols of ccl program have this property, a value of the property
60    is an index for Vccl_program_table. */
61 Lisp_Object Qccl_program_idx;
62
63 /* Table of registered CCL programs.  Each element is a vector of
64    NAME, CCL_PROG, and RESOLVEDP where NAME (symbol) is the name of
65    the program, CCL_PROG (vector) is the compiled code of the program,
66    RESOLVEDP (t or nil) is the flag to tell if symbols in CCL_PROG is
67    already resolved to index numbers or not.  */
68 Lisp_Object Vccl_program_table;
69
70 /* CCL (Code Conversion Language) is a simple language which has
71    operations on one input buffer, one output buffer, and 7 registers.
72    The syntax of CCL is described in `ccl.el'.  Emacs Lisp function
73    `ccl-compile' compiles a CCL program and produces a CCL code which
74    is a vector of integers.  The structure of this vector is as
75    follows: The 1st element: buffer-magnification, a factor for the
76    size of output buffer compared with the size of input buffer.  The
77    2nd element: address of CCL code to be executed when encountered
78    with end of input stream.  The 3rd and the remaining elements: CCL
79    codes.  */
80
81 /* Header of CCL compiled code */
82 #define CCL_HEADER_BUF_MAG      0
83 #define CCL_HEADER_EOF          1
84 #define CCL_HEADER_MAIN         2
85
86 /* CCL code is a sequence of 28-bit non-negative integers (i.e. the
87    MSB is always 0), each contains CCL command and/or arguments in the
88    following format:
89
90         |----------------- integer (28-bit) ------------------|
91         |------- 17-bit ------|- 3-bit --|- 3-bit --|- 5-bit -|
92         |--constant argument--|-register-|-register-|-command-|
93            ccccccccccccccccc      RRR        rrr       XXXXX
94   or
95         |------- relative address -------|-register-|-command-|
96                cccccccccccccccccccc          rrr       XXXXX
97   or
98         |------------- constant or other args ----------------|
99                      cccccccccccccccccccccccccccc
100
101    where, `cc...c' is a non-negative integer indicating constant value
102    (the left most `c' is always 0) or an absolute jump address, `RRR'
103    and `rrr' are CCL register number, `XXXXX' is one of the following
104    CCL commands.  */
105
106 /* CCL commands
107
108    Each comment fields shows one or more lines for command syntax and
109    the following lines for semantics of the command.  In semantics, IC
110    stands for Instruction Counter.  */
111
112 #define CCL_SetRegister         0x00 /* Set register a register value:
113                                         1:00000000000000000RRRrrrXXXXX
114                                         ------------------------------
115                                         reg[rrr] = reg[RRR];
116                                         */
117
118 #define CCL_SetShortConst       0x01 /* Set register a short constant value:
119                                         1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
120                                         ------------------------------
121                                         reg[rrr] = CCCCCCCCCCCCCCCCCCC;
122                                         */
123
124 #define CCL_SetConst            0x02 /* Set register a constant value:
125                                         1:00000000000000000000rrrXXXXX
126                                         2:CONSTANT
127                                         ------------------------------
128                                         reg[rrr] = CONSTANT;
129                                         IC++;
130                                         */
131
132 #define CCL_SetArray            0x03 /* Set register an element of array:
133                                         1:CCCCCCCCCCCCCCCCCRRRrrrXXXXX
134                                         2:ELEMENT[0]
135                                         3:ELEMENT[1]
136                                         ...
137                                         ------------------------------
138                                         if (0 <= reg[RRR] < CC..C)
139                                           reg[rrr] = ELEMENT[reg[RRR]];
140                                         IC += CC..C;
141                                         */
142
143 #define CCL_Jump                0x04 /* Jump:
144                                         1:A--D--D--R--E--S--S-000XXXXX
145                                         ------------------------------
146                                         IC += ADDRESS;
147                                         */
148
149 /* Note: If CC..C is greater than 0, the second code is omitted.  */
150
151 #define CCL_JumpCond            0x05 /* Jump conditional:
152                                         1:A--D--D--R--E--S--S-rrrXXXXX
153                                         ------------------------------
154                                         if (!reg[rrr])
155                                           IC += ADDRESS;
156                                         */
157
158
159 #define CCL_WriteRegisterJump   0x06 /* Write register and jump:
160                                         1:A--D--D--R--E--S--S-rrrXXXXX
161                                         ------------------------------
162                                         write (reg[rrr]);
163                                         IC += ADDRESS;
164                                         */
165
166 #define CCL_WriteRegisterReadJump 0x07 /* Write register, read, and jump:
167                                         1:A--D--D--R--E--S--S-rrrXXXXX
168                                         2:A--D--D--R--E--S--S-rrrYYYYY
169                                         -----------------------------
170                                         write (reg[rrr]);
171                                         IC++;
172                                         read (reg[rrr]);
173                                         IC += ADDRESS;
174                                         */
175 /* Note: If read is suspended, the resumed execution starts from the
176    second code (YYYYY == CCL_ReadJump).  */
177
178 #define CCL_WriteConstJump      0x08 /* Write constant and jump:
179                                         1:A--D--D--R--E--S--S-000XXXXX
180                                         2:CONST
181                                         ------------------------------
182                                         write (CONST);
183                                         IC += ADDRESS;
184                                         */
185
186 #define CCL_WriteConstReadJump  0x09 /* Write constant, read, and jump:
187                                         1:A--D--D--R--E--S--S-rrrXXXXX
188                                         2:CONST
189                                         3:A--D--D--R--E--S--S-rrrYYYYY
190                                         -----------------------------
191                                         write (CONST);
192                                         IC += 2;
193                                         read (reg[rrr]);
194                                         IC += ADDRESS;
195                                         */
196 /* Note: If read is suspended, the resumed execution starts from the
197    second code (YYYYY == CCL_ReadJump).  */
198
199 #define CCL_WriteStringJump     0x0A /* Write string and jump:
200                                         1:A--D--D--R--E--S--S-000XXXXX
201                                         2:LENGTH
202                                         3:0000STRIN[0]STRIN[1]STRIN[2]
203                                         ...
204                                         ------------------------------
205                                         write_string (STRING, LENGTH);
206                                         IC += ADDRESS;
207                                         */
208
209 #define CCL_WriteArrayReadJump  0x0B /* Write an array element, read, and jump:
210                                         1:A--D--D--R--E--S--S-rrrXXXXX
211                                         2:LENGTH
212                                         3:ELEMENET[0]
213                                         4:ELEMENET[1]
214                                         ...
215                                         N:A--D--D--R--E--S--S-rrrYYYYY
216                                         ------------------------------
217                                         if (0 <= reg[rrr] < LENGTH)
218                                           write (ELEMENT[reg[rrr]]);
219                                         IC += LENGTH + 2; (... pointing at N+1)
220                                         read (reg[rrr]);
221                                         IC += ADDRESS;
222                                         */
223 /* Note: If read is suspended, the resumed execution starts from the
224    Nth code (YYYYY == CCL_ReadJump).  */
225
226 #define CCL_ReadJump            0x0C /* Read and jump:
227                                         1:A--D--D--R--E--S--S-rrrYYYYY
228                                         -----------------------------
229                                         read (reg[rrr]);
230                                         IC += ADDRESS;
231                                         */
232
233 #define CCL_Branch              0x0D /* Jump by branch table:
234                                         1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
235                                         2:A--D--D--R--E-S-S[0]000XXXXX
236                                         3:A--D--D--R--E-S-S[1]000XXXXX
237                                         ...
238                                         ------------------------------
239                                         if (0 <= reg[rrr] < CC..C)
240                                           IC += ADDRESS[reg[rrr]];
241                                         else
242                                           IC += ADDRESS[CC..C];
243                                         */
244
245 #define CCL_ReadRegister        0x0E /* Read bytes into registers:
246                                         1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
247                                         2:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
248                                         ...
249                                         ------------------------------
250                                         while (CCC--)
251                                           read (reg[rrr]);
252                                         */
253
254 #define CCL_WriteExprConst      0x0F  /* write result of expression:
255                                         1:00000OPERATION000RRR000XXXXX
256                                         2:CONSTANT
257                                         ------------------------------
258                                         write (reg[RRR] OPERATION CONSTANT);
259                                         IC++;
260                                         */
261
262 /* Note: If the Nth read is suspended, the resumed execution starts
263    from the Nth code.  */
264
265 #define CCL_ReadBranch          0x10 /* Read one byte into a register,
266                                         and jump by branch table:
267                                         1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
268                                         2:A--D--D--R--E-S-S[0]000XXXXX
269                                         3:A--D--D--R--E-S-S[1]000XXXXX
270                                         ...
271                                         ------------------------------
272                                         read (read[rrr]);
273                                         if (0 <= reg[rrr] < CC..C)
274                                           IC += ADDRESS[reg[rrr]];
275                                         else
276                                           IC += ADDRESS[CC..C];
277                                         */
278
279 #define CCL_WriteRegister       0x11 /* Write registers:
280                                         1:CCCCCCCCCCCCCCCCCCCrrrXXXXX
281                                         2:CCCCCCCCCCCCCCCCCCCrrrXXXXX
282                                         ...
283                                         ------------------------------
284                                         while (CCC--)
285                                           write (reg[rrr]);
286                                         ...
287                                         */
288
289 /* Note: If the Nth write is suspended, the resumed execution
290    starts from the Nth code.  */
291
292 #define CCL_WriteExprRegister   0x12 /* Write result of expression
293                                         1:00000OPERATIONRrrRRR000XXXXX
294                                         ------------------------------
295                                         write (reg[RRR] OPERATION reg[Rrr]);
296                                         */
297
298 #define CCL_Call                0x13 /* Call the CCL program whose ID is
299                                         CC..C or cc..c.
300                                         1:CCCCCCCCCCCCCCCCCCCCFFFXXXXX
301                                         [2:00000000cccccccccccccccccccc]
302                                         ------------------------------
303                                         if (FFF)
304                                           call (cc..c)
305                                           IC++;
306                                         else
307                                           call (CC..C)
308                                         */
309
310 #define CCL_WriteConstString    0x14 /* Write a constant or a string:
311                                         1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
312                                         [2:0000STRIN[0]STRIN[1]STRIN[2]]
313                                         [...]
314                                         -----------------------------
315                                         if (!rrr)
316                                           write (CC..C)
317                                         else
318                                           write_string (STRING, CC..C);
319                                           IC += (CC..C + 2) / 3;
320                                         */
321
322 #define CCL_WriteArray          0x15 /* Write an element of array:
323                                         1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
324                                         2:ELEMENT[0]
325                                         3:ELEMENT[1]
326                                         ...
327                                         ------------------------------
328                                         if (0 <= reg[rrr] < CC..C)
329                                           write (ELEMENT[reg[rrr]]);
330                                         IC += CC..C;
331                                         */
332
333 #define CCL_End                 0x16 /* Terminate:
334                                         1:00000000000000000000000XXXXX
335                                         ------------------------------
336                                         terminate ();
337                                         */
338
339 /* The following two codes execute an assignment arithmetic/logical
340    operation.  The form of the operation is like REG OP= OPERAND.  */
341
342 #define CCL_ExprSelfConst       0x17 /* REG OP= constant:
343                                         1:00000OPERATION000000rrrXXXXX
344                                         2:CONSTANT
345                                         ------------------------------
346                                         reg[rrr] OPERATION= CONSTANT;
347                                         */
348
349 #define CCL_ExprSelfReg         0x18 /* REG1 OP= REG2:
350                                         1:00000OPERATION000RRRrrrXXXXX
351                                         ------------------------------
352                                         reg[rrr] OPERATION= reg[RRR];
353                                         */
354
355 /* The following codes execute an arithmetic/logical operation.  The
356    form of the operation is like REG_X = REG_Y OP OPERAND2.  */
357
358 #define CCL_SetExprConst        0x19 /* REG_X = REG_Y OP constant:
359                                         1:00000OPERATION000RRRrrrXXXXX
360                                         2:CONSTANT
361                                         ------------------------------
362                                         reg[rrr] = reg[RRR] OPERATION CONSTANT;
363                                         IC++;
364                                         */
365
366 #define CCL_SetExprReg          0x1A /* REG1 = REG2 OP REG3:
367                                         1:00000OPERATIONRrrRRRrrrXXXXX
368                                         ------------------------------
369                                         reg[rrr] = reg[RRR] OPERATION reg[Rrr];
370                                         */
371
372 #define CCL_JumpCondExprConst   0x1B /* Jump conditional according to
373                                         an operation on constant:
374                                         1:A--D--D--R--E--S--S-rrrXXXXX
375                                         2:OPERATION
376                                         3:CONSTANT
377                                         -----------------------------
378                                         reg[7] = reg[rrr] OPERATION CONSTANT;
379                                         if (!(reg[7]))
380                                           IC += ADDRESS;
381                                         else
382                                           IC += 2
383                                         */
384
385 #define CCL_JumpCondExprReg     0x1C /* Jump conditional according to
386                                         an operation on register:
387                                         1:A--D--D--R--E--S--S-rrrXXXXX
388                                         2:OPERATION
389                                         3:RRR
390                                         -----------------------------
391                                         reg[7] = reg[rrr] OPERATION reg[RRR];
392                                         if (!reg[7])
393                                           IC += ADDRESS;
394                                         else
395                                           IC += 2;
396                                         */
397
398 #define CCL_ReadJumpCondExprConst 0x1D /* Read and jump conditional according
399                                           to an operation on constant:
400                                         1:A--D--D--R--E--S--S-rrrXXXXX
401                                         2:OPERATION
402                                         3:CONSTANT
403                                         -----------------------------
404                                         read (reg[rrr]);
405                                         reg[7] = reg[rrr] OPERATION CONSTANT;
406                                         if (!reg[7])
407                                           IC += ADDRESS;
408                                         else
409                                           IC += 2;
410                                         */
411
412 #define CCL_ReadJumpCondExprReg 0x1E /* Read and jump conditional according
413                                         to an operation on register:
414                                         1:A--D--D--R--E--S--S-rrrXXXXX
415                                         2:OPERATION
416                                         3:RRR
417                                         -----------------------------
418                                         read (reg[rrr]);
419                                         reg[7] = reg[rrr] OPERATION reg[RRR];
420                                         if (!reg[7])
421                                           IC += ADDRESS;
422                                         else
423                                           IC += 2;
424                                         */
425
426 #define CCL_Extention           0x1F /* Extended CCL code
427                                         1:ExtendedCOMMNDRrrRRRrrrXXXXX
428                                         2:ARGUMENT
429                                         3:...
430                                         ------------------------------
431                                         extended_command (rrr,RRR,Rrr,ARGS)
432                                       */
433
434 /*
435    Here after, Extended CCL Instructions.
436    Bit length of extended command is 14.
437    Therefore, the instruction code range is 0..16384(0x3fff).
438  */
439
440 /* Read a multibyte characeter.
441    A code point is stored into reg[rrr].  A charset ID is stored into
442    reg[RRR].  */
443
444 #define CCL_ReadMultibyteChar2  0x00 /* Read Multibyte Character
445                                         1:ExtendedCOMMNDRrrRRRrrrXXXXX  */
446
447 /* Write a multibyte character.
448    Write a character whose code point is reg[rrr] and the charset ID
449    is reg[RRR].  */
450
451 #define CCL_WriteMultibyteChar2 0x01 /* Write Multibyte Character
452                                         1:ExtendedCOMMNDRrrRRRrrrXXXXX  */
453
454 /* Translate a character whose code point is reg[rrr] and the charset
455    ID is reg[RRR] by a translation table whose ID is reg[Rrr].
456
457    A translated character is set in reg[rrr] (code point) and reg[RRR]
458    (charset ID).  */
459
460 #define CCL_TranslateCharacter  0x02 /* Translate a multibyte character
461                                         1:ExtendedCOMMNDRrrRRRrrrXXXXX  */
462
463 /* Translate a character whose code point is reg[rrr] and the charset
464    ID is reg[RRR] by a translation table whose ID is ARGUMENT.
465
466    A translated character is set in reg[rrr] (code point) and reg[RRR]
467    (charset ID).  */
468
469 #define CCL_TranslateCharacterConstTbl 0x03 /* Translate a multibyte character
470                                                1:ExtendedCOMMNDRrrRRRrrrXXXXX
471                                                2:ARGUMENT(Translation Table ID)
472                                             */
473
474 /* Iterate looking up MAPs for reg[rrr] starting from the Nth (N =
475    reg[RRR]) MAP until some value is found.
476
477    Each MAP is a Lisp vector whose element is number, nil, t, or
478    lambda.
479    If the element is nil, ignore the map and proceed to the next map.
480    If the element is t or lambda, finish without changing reg[rrr].
481    If the element is a number, set reg[rrr] to the number and finish.
482
483    Detail of the map structure is described in the comment for
484    CCL_MapMultiple below.  */
485
486 #define CCL_IterateMultipleMap  0x10 /* Iterate multiple maps
487                                         1:ExtendedCOMMNDXXXRRRrrrXXXXX
488                                         2:NUMBER of MAPs
489                                         3:MAP-ID1
490                                         4:MAP-ID2
491                                         ...
492                                      */
493
494 /* Map the code in reg[rrr] by MAPs starting from the Nth (N =
495    reg[RRR]) map.
496
497    MAPs are supplied in the succeeding CCL codes as follows:
498
499    When CCL program gives this nested structure of map to this command:
500         ((MAP-ID11
501           MAP-ID12
502           (MAP-ID121 MAP-ID122 MAP-ID123)
503           MAP-ID13)
504          (MAP-ID21
505           (MAP-ID211 (MAP-ID2111) MAP-ID212)
506           MAP-ID22)),
507    the compiled CCL code has this sequence:
508         CCL_MapMultiple (CCL code of this command)
509         16 (total number of MAPs and SEPARATORs)
510         -7 (1st SEPARATOR)
511         MAP-ID11
512         MAP-ID12
513         -3 (2nd SEPARATOR)
514         MAP-ID121
515         MAP-ID122
516         MAP-ID123
517         MAP-ID13
518         -7 (3rd SEPARATOR)
519         MAP-ID21
520         -4 (4th SEPARATOR)
521         MAP-ID211
522         -1 (5th SEPARATOR)
523         MAP_ID2111
524         MAP-ID212
525         MAP-ID22
526
527    A value of each SEPARATOR follows this rule:
528         MAP-SET := SEPARATOR [(MAP-ID | MAP-SET)]+
529         SEPARATOR := -(number of MAP-IDs and SEPARATORs in the MAP-SET)
530
531    (*)....Nest level of MAP-SET must not be over than MAX_MAP_SET_LEVEL.
532
533    When some map fails to map (i.e. it doesn't have a value for
534    reg[rrr]), the mapping is treated as identity.
535
536    The mapping is iterated for all maps in each map set (set of maps
537    separated by SEPARATOR) except in the case that lambda is
538    encountered.  More precisely, the mapping proceeds as below:
539
540    At first, VAL0 is set to reg[rrr], and it is translated by the
541    first map to VAL1.  Then, VAL1 is translated by the next map to
542    VAL2.  This mapping is iterated until the last map is used.  The
543    result of the mapping is the last value of VAL?.  When the mapping
544    process reached to the end of the map set, it moves to the next
545    map set.  If the next does not exit, the mapping process terminates,
546    and regard the last value as a result.
547
548    But, when VALm is mapped to VALn and VALn is not a number, the
549    mapping proceeds as follows:
550
551    If VALn is nil, the lastest map is ignored and the mapping of VALm
552    proceeds to the next map.
553
554    In VALn is t, VALm is reverted to reg[rrr] and the mapping of VALm
555    proceeds to the next map.
556
557    If VALn is lambda, move to the next map set like reaching to the
558    end of the current map set.
559
560    If VALn is a symbol, call the CCL program refered by it.
561    Then, use reg[rrr] as a mapped value except for -1, -2 and -3.
562    Such special values are regarded as nil, t, and lambda respectively.
563
564    Each map is a Lisp vector of the following format (a) or (b):
565         (a)......[STARTPOINT VAL1 VAL2 ...]
566         (b)......[t VAL STARTPOINT ENDPOINT],
567    where
568         STARTPOINT is an offset to be used for indexing a map,
569         ENDPOINT is a maximum index number of a map,
570         VAL and VALn is a number, nil, t, or lambda.
571
572    Valid index range of a map of type (a) is:
573         STARTPOINT <= index < STARTPOINT + map_size - 1
574    Valid index range of a map of type (b) is:
575         STARTPOINT <= index < ENDPOINT  */
576
577 #define CCL_MapMultiple 0x11    /* Mapping by multiple code conversion maps
578                                          1:ExtendedCOMMNDXXXRRRrrrXXXXX
579                                          2:N-2
580                                          3:SEPARATOR_1 (< 0)
581                                          4:MAP-ID_1
582                                          5:MAP-ID_2
583                                          ...
584                                          M:SEPARATOR_x (< 0)
585                                          M+1:MAP-ID_y
586                                          ...
587                                          N:SEPARATOR_z (< 0)
588                                       */
589
590 #define MAX_MAP_SET_LEVEL 30
591
592 typedef struct
593 {
594   int rest_length;
595   int orig_val;
596 } tr_stack;
597
598 static tr_stack mapping_stack[MAX_MAP_SET_LEVEL];
599 static tr_stack *mapping_stack_pointer;
600
601 /* If this variable is non-zero, it indicates the stack_idx
602    of immediately called by CCL_MapMultiple. */
603 static int stack_idx_of_map_multiple;
604
605 #define PUSH_MAPPING_STACK(restlen, orig)               \
606   do {                                                  \
607     mapping_stack_pointer->rest_length = (restlen);     \
608     mapping_stack_pointer->orig_val = (orig);           \
609     mapping_stack_pointer++;                            \
610   } while (0)
611
612 #define POP_MAPPING_STACK(restlen, orig)                \
613   do {                                                  \
614     mapping_stack_pointer--;                            \
615     (restlen) = mapping_stack_pointer->rest_length;     \
616     (orig) = mapping_stack_pointer->orig_val;           \
617   } while (0)
618
619 #define CCL_CALL_FOR_MAP_INSTRUCTION(symbol, ret_ic)            \
620   do {                                                          \
621     struct ccl_program called_ccl;                              \
622     if (stack_idx >= 256                                        \
623         || (setup_ccl_program (&called_ccl, (symbol)) != 0))    \
624       {                                                         \
625         if (stack_idx > 0)                                      \
626           {                                                     \
627             ccl_prog = ccl_prog_stack_struct[0].ccl_prog;       \
628             ic = ccl_prog_stack_struct[0].ic;                   \
629           }                                                     \
630         CCL_INVALID_CMD;                                        \
631       }                                                         \
632     ccl_prog_stack_struct[stack_idx].ccl_prog = ccl_prog;       \
633     ccl_prog_stack_struct[stack_idx].ic = (ret_ic);             \
634     stack_idx++;                                                \
635     ccl_prog = called_ccl.prog;                                 \
636     ic = CCL_HEADER_MAIN;                                       \
637     goto ccl_repeat;                                            \
638   } while (0)
639
640 #define CCL_MapSingle           0x12 /* Map by single code conversion map
641                                         1:ExtendedCOMMNDXXXRRRrrrXXXXX
642                                         2:MAP-ID
643                                         ------------------------------
644                                         Map reg[rrr] by MAP-ID.
645                                         If some valid mapping is found,
646                                           set reg[rrr] to the result,
647                                         else
648                                           set reg[RRR] to -1.
649                                      */
650
651 /* CCL arithmetic/logical operators. */
652 #define CCL_PLUS        0x00    /* X = Y + Z */
653 #define CCL_MINUS       0x01    /* X = Y - Z */
654 #define CCL_MUL         0x02    /* X = Y * Z */
655 #define CCL_DIV         0x03    /* X = Y / Z */
656 #define CCL_MOD         0x04    /* X = Y % Z */
657 #define CCL_AND         0x05    /* X = Y & Z */
658 #define CCL_OR          0x06    /* X = Y | Z */
659 #define CCL_XOR         0x07    /* X = Y ^ Z */
660 #define CCL_LSH         0x08    /* X = Y << Z */
661 #define CCL_RSH         0x09    /* X = Y >> Z */
662 #define CCL_LSH8        0x0A    /* X = (Y << 8) | Z */
663 #define CCL_RSH8        0x0B    /* X = Y >> 8, r[7] = Y & 0xFF  */
664 #define CCL_DIVMOD      0x0C    /* X = Y / Z, r[7] = Y % Z */
665 #define CCL_LS          0x10    /* X = (X < Y) */
666 #define CCL_GT          0x11    /* X = (X > Y) */
667 #define CCL_EQ          0x12    /* X = (X == Y) */
668 #define CCL_LE          0x13    /* X = (X <= Y) */
669 #define CCL_GE          0x14    /* X = (X >= Y) */
670 #define CCL_NE          0x15    /* X = (X != Y) */
671
672 #define CCL_DECODE_SJIS 0x16    /* X = HIGHER_BYTE (DE-SJIS (Y, Z))
673                                    r[7] = LOWER_BYTE (DE-SJIS (Y, Z)) */
674 #define CCL_ENCODE_SJIS 0x17    /* X = HIGHER_BYTE (SJIS (Y, Z))
675                                    r[7] = LOWER_BYTE (SJIS (Y, Z) */
676
677 /* Terminate CCL program successfully.  */
678 #define CCL_SUCCESS                     \
679   do {                                  \
680     ccl->status = CCL_STAT_SUCCESS;     \
681     goto ccl_finish;                    \
682   } while (0)
683
684 /* Suspend CCL program because of reading from empty input buffer or
685    writing to full output buffer.  When this program is resumed, the
686    same I/O command is executed.  */
687 #define CCL_SUSPEND(stat)       \
688   do {                          \
689     ic--;                       \
690     ccl->status = stat;         \
691     goto ccl_finish;            \
692   } while (0)
693
694 /* Terminate CCL program because of invalid command.  Should not occur
695    in the normal case.  */
696 #define CCL_INVALID_CMD                 \
697   do {                                  \
698     ccl->status = CCL_STAT_INVALID_CMD; \
699     goto ccl_error_handler;             \
700   } while (0)
701
702 /* Encode one character CH to multibyte form and write to the current
703    output buffer.  At encoding time, if CH is less than 256, CH is
704    written as is.  At decoding time, if CH cannot be regarded as an
705    ASCII character, write it in multibyte form.  */
706 #define CCL_WRITE_CHAR(ch)                                      \
707   do {                                                          \
708     if (!destination)                                           \
709       CCL_INVALID_CMD;                                          \
710     if (conversion_mode == CCL_MODE_ENCODING)                   \
711       {                                                         \
712         if (ch == '\n')                                         \
713           {                                                     \
714             if (ccl->eol_type == CCL_CODING_EOL_CRLF)           \
715               {                                                 \
716                 Dynarr_add (destination, '\r');                 \
717                 Dynarr_add (destination, '\n');                 \
718               }                                                 \
719             else if (ccl->eol_type == CCL_CODING_EOL_CR)        \
720               Dynarr_add (destination, '\r');                   \
721             else                                                \
722               Dynarr_add (destination, '\n');                   \
723           }                                                     \
724         else if (ch < 0x100)                                    \
725           {                                                     \
726             Dynarr_add (destination, ch);                       \
727           }                                                     \
728         else                                                    \
729           {                                                     \
730             Bufbyte work[MAX_EMCHAR_LEN];                       \
731             int len;                                            \
732             len = non_ascii_set_charptr_emchar (work, ch);      \
733             Dynarr_add_many (destination, work, len);           \
734           }                                                     \
735       }                                                         \
736     else                                                        \
737       {                                                         \
738         if (!CHAR_MULTIBYTE_P(ch))                              \
739           {                                                     \
740             Dynarr_add (destination, ch);                       \
741           }                                                     \
742         else                                                    \
743           {                                                     \
744             Bufbyte work[MAX_EMCHAR_LEN];                       \
745             int len;                                            \
746             len = non_ascii_set_charptr_emchar (work, ch);      \
747             Dynarr_add_many (destination, work, len);           \
748           }                                                     \
749       }                                                         \
750   } while (0)
751
752 /* Write a string at ccl_prog[IC] of length LEN to the current output
753    buffer.  But this macro treat this string as a binary.  Therefore,
754    cannot handle a multibyte string except for Control-1 characters. */
755 #define CCL_WRITE_STRING(len)                                   \
756   do {                                                          \
757     Bufbyte work[MAX_EMCHAR_LEN];                               \
758     int ch, bytes;                                              \
759     if (!destination)                                           \
760       CCL_INVALID_CMD;                                          \
761     else if (conversion_mode == CCL_MODE_ENCODING)              \
762       {                                                         \
763         for (i = 0; i < len; i++)                               \
764           {                                                     \
765             ch = ((XINT (ccl_prog[ic + (i / 3)]))               \
766                   >> ((2 - (i % 3)) * 8)) & 0xFF;               \
767             if (ch == '\n')                                     \
768               {                                                 \
769                 if (ccl->eol_type == CCL_CODING_EOL_CRLF)       \
770                   {                                             \
771                     Dynarr_add (destination, '\r');             \
772                     Dynarr_add (destination, '\n');             \
773                   }                                             \
774                 else if (ccl->eol_type == CCL_CODING_EOL_CR)    \
775                   Dynarr_add (destination, '\r');               \
776                 else                                            \
777                   Dynarr_add (destination, '\n');               \
778               }                                                 \
779             if (ch < 0x100)                                     \
780               {                                                 \
781                 Dynarr_add (destination, ch);                   \
782               }                                                 \
783             else                                                \
784               {                                                 \
785                 bytes = non_ascii_set_charptr_emchar (work, ch); \
786                 Dynarr_add_many (destination, work, len);       \
787               }                                                 \
788           }                                                     \
789       }                                                         \
790     else                                                        \
791       {                                                         \
792         for (i = 0; i < len; i++)                               \
793           {                                                     \
794             ch = ((XINT (ccl_prog[ic + (i / 3)]))               \
795                   >> ((2 - (i % 3)) * 8)) & 0xFF;               \
796             if (!CHAR_MULTIBYTE_P(ch))                          \
797               {                                                 \
798                 Dynarr_add (destination, ch);                   \
799               }                                                 \
800             else                                                \
801               {                                                 \
802                 bytes = non_ascii_set_charptr_emchar (work, ch); \
803                 Dynarr_add_many (destination, work, len);       \
804               }                                                 \
805           }                                                     \
806       }                                                         \
807   } while (0)
808
809 /* Read one byte from the current input buffer into Rth register.  */
810 #define CCL_READ_CHAR(r)                                \
811   do {                                                  \
812     if (!src)                                           \
813       CCL_INVALID_CMD;                                  \
814     if (src < src_end)                                  \
815       r = *src++;                                       \
816     else                                                \
817       {                                                 \
818         if (ccl->last_block)                            \
819           {                                             \
820             ic = ccl->eof_ic;                           \
821             goto ccl_repeat;                            \
822           }                                             \
823         else                                            \
824           CCL_SUSPEND (CCL_STAT_SUSPEND_BY_SRC);        \
825       }                                                 \
826   } while (0)
827
828
829 /* Set C to the character code made from CHARSET and CODE.  This is
830    like MAKE_CHAR but check the validity of CHARSET and CODE.  If they
831    are not valid, set C to (CODE & 0xFF) because that is usually the
832    case that CCL_ReadMultibyteChar2 read an invalid code and it set
833    CODE to that invalid byte.  */
834
835 /* On XEmacs, TranslateCharacter is not supported.  Thus, this
836    macro is not used.  */
837 #if 0
838 #define CCL_MAKE_CHAR(charset, code, c)                         \
839   do {                                                          \
840     if (charset == CHARSET_ASCII)                               \
841       c = code & 0xFF;                                          \
842     else if (CHARSET_DEFINED_P (charset)                        \
843              && (code & 0x7F) >= 32                             \
844              && (code < 256 || ((code >> 7) & 0x7F) >= 32))     \
845       {                                                         \
846         int c1 = code & 0x7F, c2 = 0;                           \
847                                                                 \
848         if (code >= 256)                                        \
849           c2 = c1, c1 = (code >> 7) & 0x7F;                     \
850         c = MAKE_CHAR (charset, c1, c2);                        \
851       }                                                         \
852     else                                                        \
853       c = code & 0xFF;                                          \
854   } while (0)
855 #endif
856
857
858 /* Execute CCL code on SRC_BYTES length text at SOURCE.  The resulting
859    text goes to a place pointed by DESTINATION, the length of which
860    should not exceed DST_BYTES.  The bytes actually processed is
861    returned as *CONSUMED.  The return value is the length of the
862    resulting text.  As a side effect, the contents of CCL registers
863    are updated.  If SOURCE or DESTINATION is NULL, only operations on
864    registers are permitted.  */
865
866 #ifdef CCL_DEBUG
867 #define CCL_DEBUG_BACKTRACE_LEN 256
868 int ccl_backtrace_table[CCL_BACKTRACE_TABLE];
869 int ccl_backtrace_idx;
870 #endif
871
872 struct ccl_prog_stack
873   {
874     Lisp_Object *ccl_prog;      /* Pointer to an array of CCL code.  */
875     int ic;                     /* Instruction Counter.  */
876   };
877
878 /* For the moment, we only support depth 256 of stack.  */
879 static struct ccl_prog_stack ccl_prog_stack_struct[256];
880
881 int
882 ccl_driver (struct ccl_program *ccl,
883             const unsigned char *source,
884             unsigned_char_dynarr *destination,
885             int src_bytes,
886             int *consumed,
887             int conversion_mode)
888 {
889   register int *reg = ccl->reg;
890   register int ic = ccl->ic;
891   register int code = -1;
892   register int field1, field2;
893   register Lisp_Object *ccl_prog = ccl->prog;
894   const unsigned char *src = source, *src_end = src + src_bytes;
895   int jump_address;
896   int i, j, op;
897   int stack_idx = ccl->stack_idx;
898   /* Instruction counter of the current CCL code. */
899   int this_ic = 0;
900
901   if (ic >= ccl->eof_ic)
902     ic = CCL_HEADER_MAIN;
903
904   if (ccl->buf_magnification ==0) /* We can't produce any bytes.  */
905     destination = NULL;
906
907   /* Set mapping stack pointer. */
908   mapping_stack_pointer = mapping_stack;
909
910 #ifdef CCL_DEBUG
911   ccl_backtrace_idx = 0;
912 #endif
913
914   for (;;)
915     {
916     ccl_repeat:
917 #ifdef CCL_DEBUG
918       ccl_backtrace_table[ccl_backtrace_idx++] = ic;
919       if (ccl_backtrace_idx >= CCL_DEBUG_BACKTRACE_LEN)
920         ccl_backtrace_idx = 0;
921       ccl_backtrace_table[ccl_backtrace_idx] = 0;
922 #endif
923
924       if (!NILP (Vquit_flag) && NILP (Vinhibit_quit))
925         {
926           /* We can't just signal Qquit, instead break the loop as if
927              the whole data is processed.  Don't reset Vquit_flag, it
928              must be handled later at a safer place.  */
929           if (consumed)
930             src = source + src_bytes;
931           ccl->status = CCL_STAT_QUIT;
932           break;
933         }
934
935       this_ic = ic;
936       code = XINT (ccl_prog[ic]); ic++;
937       field1 = code >> 8;
938       field2 = (code & 0xFF) >> 5;
939
940 #define rrr field2
941 #define RRR (field1 & 7)
942 #define Rrr ((field1 >> 3) & 7)
943 #define ADDR field1
944 #define EXCMD (field1 >> 6)
945
946       switch (code & 0x1F)
947         {
948         case CCL_SetRegister:   /* 00000000000000000RRRrrrXXXXX */
949           reg[rrr] = reg[RRR];
950           break;
951
952         case CCL_SetShortConst: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
953           reg[rrr] = field1;
954           break;
955
956         case CCL_SetConst:      /* 00000000000000000000rrrXXXXX */
957           reg[rrr] = XINT (ccl_prog[ic]);
958           ic++;
959           break;
960
961         case CCL_SetArray:      /* CCCCCCCCCCCCCCCCCCCCRRRrrrXXXXX */
962           i = reg[RRR];
963           j = field1 >> 3;
964           if ((unsigned int) i < j)
965             reg[rrr] = XINT (ccl_prog[ic + i]);
966           ic += j;
967           break;
968
969         case CCL_Jump:          /* A--D--D--R--E--S--S-000XXXXX */
970           ic += ADDR;
971           break;
972
973         case CCL_JumpCond:      /* A--D--D--R--E--S--S-rrrXXXXX */
974           if (!reg[rrr])
975             ic += ADDR;
976           break;
977
978         case CCL_WriteRegisterJump: /* A--D--D--R--E--S--S-rrrXXXXX */
979           i = reg[rrr];
980           CCL_WRITE_CHAR (i);
981           ic += ADDR;
982           break;
983
984         case CCL_WriteRegisterReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */
985           i = reg[rrr];
986           CCL_WRITE_CHAR (i);
987           ic++;
988           CCL_READ_CHAR (reg[rrr]);
989           ic += ADDR - 1;
990           break;
991
992         case CCL_WriteConstJump: /* A--D--D--R--E--S--S-000XXXXX */
993           i = XINT (ccl_prog[ic]);
994           CCL_WRITE_CHAR (i);
995           ic += ADDR;
996           break;
997
998         case CCL_WriteConstReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */
999           i = XINT (ccl_prog[ic]);
1000           CCL_WRITE_CHAR (i);
1001           ic++;
1002           CCL_READ_CHAR (reg[rrr]);
1003           ic += ADDR - 1;
1004           break;
1005
1006         case CCL_WriteStringJump: /* A--D--D--R--E--S--S-000XXXXX */
1007           j = XINT (ccl_prog[ic]);
1008           ic++;
1009           CCL_WRITE_STRING (j);
1010           ic += ADDR - 1;
1011           break;
1012
1013         case CCL_WriteArrayReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */
1014           i = reg[rrr];
1015           j = XINT (ccl_prog[ic]);
1016           if ((unsigned int) i < j)
1017             {
1018               i = XINT (ccl_prog[ic + 1 + i]);
1019               CCL_WRITE_CHAR (i);
1020             }
1021           ic += j + 2;
1022           CCL_READ_CHAR (reg[rrr]);
1023           ic += ADDR - (j + 2);
1024           break;
1025
1026         case CCL_ReadJump:      /* A--D--D--R--E--S--S-rrrYYYYY */
1027           CCL_READ_CHAR (reg[rrr]);
1028           ic += ADDR;
1029           break;
1030
1031         case CCL_ReadBranch:    /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
1032           CCL_READ_CHAR (reg[rrr]);
1033           /* fall through ... */
1034         case CCL_Branch:        /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
1035           if ((unsigned int) reg[rrr] < field1)
1036             ic += XINT (ccl_prog[ic + reg[rrr]]);
1037           else
1038             ic += XINT (ccl_prog[ic + field1]);
1039           break;
1040
1041         case CCL_ReadRegister:  /* CCCCCCCCCCCCCCCCCCCCrrXXXXX */
1042           while (1)
1043             {
1044               CCL_READ_CHAR (reg[rrr]);
1045               if (!field1) break;
1046               code = XINT (ccl_prog[ic]); ic++;
1047               field1 = code >> 8;
1048               field2 = (code & 0xFF) >> 5;
1049             }
1050           break;
1051
1052         case CCL_WriteExprConst:  /* 1:00000OPERATION000RRR000XXXXX */
1053           rrr = 7;
1054           i = reg[RRR];
1055           j = XINT (ccl_prog[ic]);
1056           op = field1 >> 6;
1057           jump_address = ic + 1;
1058           goto ccl_set_expr;
1059
1060         case CCL_WriteRegister: /* CCCCCCCCCCCCCCCCCCCrrrXXXXX */
1061           while (1)
1062             {
1063               i = reg[rrr];
1064               CCL_WRITE_CHAR (i);
1065               if (!field1) break;
1066               code = XINT (ccl_prog[ic]); ic++;
1067               field1 = code >> 8;
1068               field2 = (code & 0xFF) >> 5;
1069             }
1070           break;
1071
1072         case CCL_WriteExprRegister: /* 1:00000OPERATIONRrrRRR000XXXXX */
1073           rrr = 7;
1074           i = reg[RRR];
1075           j = reg[Rrr];
1076           op = field1 >> 6;
1077           jump_address = ic;
1078           goto ccl_set_expr;
1079
1080         case CCL_Call:          /* 1:CCCCCCCCCCCCCCCCCCCCFFFXXXXX */
1081           {
1082             Lisp_Object slot;
1083             int prog_id;
1084
1085             /* If FFF is nonzero, the CCL program ID is in the
1086                following code.  */
1087             if (rrr)
1088               {
1089                 prog_id = XINT (ccl_prog[ic]);
1090                 ic++;
1091               }
1092             else
1093               prog_id = field1;
1094
1095             if (stack_idx >= 256
1096                 || prog_id < 0
1097                 || prog_id >= XVECTOR (Vccl_program_table)->size
1098                 || (slot = XVECTOR (Vccl_program_table)->contents[prog_id],
1099                     !VECTORP (slot))
1100                 || !VECTORP (XVECTOR (slot)->contents[1]))
1101               {
1102                 if (stack_idx > 0)
1103                   {
1104                     ccl_prog = ccl_prog_stack_struct[0].ccl_prog;
1105                     ic = ccl_prog_stack_struct[0].ic;
1106                   }
1107                 CCL_INVALID_CMD;
1108               }
1109
1110             ccl_prog_stack_struct[stack_idx].ccl_prog = ccl_prog;
1111             ccl_prog_stack_struct[stack_idx].ic = ic;
1112             stack_idx++;
1113             ccl_prog = XVECTOR (XVECTOR (slot)->contents[1])->contents;
1114             ic = CCL_HEADER_MAIN;
1115           }
1116           break;
1117
1118         case CCL_WriteConstString: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
1119           if (!rrr)
1120             CCL_WRITE_CHAR (field1);
1121           else
1122             {
1123               CCL_WRITE_STRING (field1);
1124               ic += (field1 + 2) / 3;
1125             }
1126           break;
1127
1128         case CCL_WriteArray:    /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
1129           i = reg[rrr];
1130           if ((unsigned int) i < field1)
1131             {
1132               j = XINT (ccl_prog[ic + i]);
1133               CCL_WRITE_CHAR (j);
1134             }
1135           ic += field1;
1136           break;
1137
1138         case CCL_End:           /* 0000000000000000000000XXXXX */
1139           if (stack_idx > 0)
1140             {
1141               stack_idx--;
1142               ccl_prog = ccl_prog_stack_struct[stack_idx].ccl_prog;
1143               ic = ccl_prog_stack_struct[stack_idx].ic;
1144               break;
1145             }
1146           if (src)
1147             src = src_end;
1148           /* ccl->ic should points to this command code again to
1149              suppress further processing.  */
1150           ic--;
1151           CCL_SUCCESS;
1152
1153         case CCL_ExprSelfConst: /* 00000OPERATION000000rrrXXXXX */
1154           i = XINT (ccl_prog[ic]);
1155           ic++;
1156           op = field1 >> 6;
1157           goto ccl_expr_self;
1158
1159         case CCL_ExprSelfReg:   /* 00000OPERATION000RRRrrrXXXXX */
1160           i = reg[RRR];
1161           op = field1 >> 6;
1162
1163         ccl_expr_self:
1164           switch (op)
1165             {
1166             case CCL_PLUS: reg[rrr] += i; break;
1167             case CCL_MINUS: reg[rrr] -= i; break;
1168             case CCL_MUL: reg[rrr] *= i; break;
1169             case CCL_DIV: reg[rrr] /= i; break;
1170             case CCL_MOD: reg[rrr] %= i; break;
1171             case CCL_AND: reg[rrr] &= i; break;
1172             case CCL_OR: reg[rrr] |= i; break;
1173             case CCL_XOR: reg[rrr] ^= i; break;
1174             case CCL_LSH: reg[rrr] <<= i; break;
1175             case CCL_RSH: reg[rrr] >>= i; break;
1176             case CCL_LSH8: reg[rrr] <<= 8; reg[rrr] |= i; break;
1177             case CCL_RSH8: reg[7] = reg[rrr] & 0xFF; reg[rrr] >>= 8; break;
1178             case CCL_DIVMOD: reg[7] = reg[rrr] % i; reg[rrr] /= i; break;
1179             case CCL_LS: reg[rrr] = reg[rrr] < i; break;
1180             case CCL_GT: reg[rrr] = reg[rrr] > i; break;
1181             case CCL_EQ: reg[rrr] = reg[rrr] == i; break;
1182             case CCL_LE: reg[rrr] = reg[rrr] <= i; break;
1183             case CCL_GE: reg[rrr] = reg[rrr] >= i; break;
1184             case CCL_NE: reg[rrr] = reg[rrr] != i; break;
1185             default: CCL_INVALID_CMD;
1186             }
1187           break;
1188
1189         case CCL_SetExprConst:  /* 00000OPERATION000RRRrrrXXXXX */
1190           i = reg[RRR];
1191           j = XINT (ccl_prog[ic]);
1192           op = field1 >> 6;
1193           jump_address = ++ic;
1194           goto ccl_set_expr;
1195
1196         case CCL_SetExprReg:    /* 00000OPERATIONRrrRRRrrrXXXXX */
1197           i = reg[RRR];
1198           j = reg[Rrr];
1199           op = field1 >> 6;
1200           jump_address = ic;
1201           goto ccl_set_expr;
1202
1203         case CCL_ReadJumpCondExprConst: /* A--D--D--R--E--S--S-rrrXXXXX */
1204           CCL_READ_CHAR (reg[rrr]);
1205         case CCL_JumpCondExprConst: /* A--D--D--R--E--S--S-rrrXXXXX */
1206           i = reg[rrr];
1207           op = XINT (ccl_prog[ic]);
1208           jump_address = ic++ + ADDR;
1209           j = XINT (ccl_prog[ic]);
1210           ic++;
1211           rrr = 7;
1212           goto ccl_set_expr;
1213
1214         case CCL_ReadJumpCondExprReg: /* A--D--D--R--E--S--S-rrrXXXXX */
1215           CCL_READ_CHAR (reg[rrr]);
1216         case CCL_JumpCondExprReg:
1217           i = reg[rrr];
1218           op = XINT (ccl_prog[ic]);
1219           jump_address = ic++ + ADDR;
1220           j = reg[XINT (ccl_prog[ic])];
1221           ic++;
1222           rrr = 7;
1223
1224         ccl_set_expr:
1225           switch (op)
1226             {
1227             case CCL_PLUS: reg[rrr] = i + j; break;
1228             case CCL_MINUS: reg[rrr] = i - j; break;
1229             case CCL_MUL: reg[rrr] = i * j; break;
1230             case CCL_DIV: reg[rrr] = i / j; break;
1231             case CCL_MOD: reg[rrr] = i % j; break;
1232             case CCL_AND: reg[rrr] = i & j; break;
1233             case CCL_OR: reg[rrr] = i | j; break;
1234             case CCL_XOR: reg[rrr] = i ^ j;; break;
1235             case CCL_LSH: reg[rrr] = i << j; break;
1236             case CCL_RSH: reg[rrr] = i >> j; break;
1237             case CCL_LSH8: reg[rrr] = (i << 8) | j; break;
1238             case CCL_RSH8: reg[rrr] = i >> 8; reg[7] = i & 0xFF; break;
1239             case CCL_DIVMOD: reg[rrr] = i / j; reg[7] = i % j; break;
1240             case CCL_LS: reg[rrr] = i < j; break;
1241             case CCL_GT: reg[rrr] = i > j; break;
1242             case CCL_EQ: reg[rrr] = i == j; break;
1243             case CCL_LE: reg[rrr] = i <= j; break;
1244             case CCL_GE: reg[rrr] = i >= j; break;
1245             case CCL_NE: reg[rrr] = i != j; break;
1246             case CCL_DECODE_SJIS:
1247               /* DECODE_SJIS set MSB for internal format
1248                  as opposed to Emacs.  */
1249               DECODE_SJIS (i, j, reg[rrr], reg[7]);
1250               reg[rrr] &= 0x7F;
1251               reg[7] &= 0x7F;
1252               break;
1253             case CCL_ENCODE_SJIS:
1254               /* ENCODE_SJIS assumes MSB of SJIS-char is set
1255                  as opposed to Emacs.  */
1256               ENCODE_SJIS (i | 0x80, j | 0x80, reg[rrr], reg[7]);
1257               break;
1258             default: CCL_INVALID_CMD;
1259             }
1260           code &= 0x1F;
1261           if (code == CCL_WriteExprConst || code == CCL_WriteExprRegister)
1262             {
1263               i = reg[rrr];
1264               CCL_WRITE_CHAR (i);
1265               ic = jump_address;
1266             }
1267           else if (!reg[rrr])
1268             ic = jump_address;
1269           break;
1270
1271         case CCL_Extention:
1272           switch (EXCMD)
1273             {
1274             case CCL_ReadMultibyteChar2:
1275               if (!src)
1276                 CCL_INVALID_CMD;
1277
1278               do {
1279                 if (src >= src_end)
1280                   {
1281                     src++;
1282                     goto ccl_read_multibyte_character_suspend;
1283                   }
1284
1285                 i = *src++;
1286                 if (i < 0x80)
1287                   {
1288                     /* ASCII */
1289                     reg[rrr] = i;
1290                     reg[RRR] = LEADING_BYTE_ASCII;
1291                   }
1292                 else if (i <= MAX_LEADING_BYTE_OFFICIAL_1)
1293                   {
1294                     if (src >= src_end)
1295                       goto ccl_read_multibyte_character_suspend;
1296                     reg[RRR] = i;
1297                     reg[rrr] = (*src++ & 0x7F);
1298                   }
1299                 else if (i <= MAX_LEADING_BYTE_OFFICIAL_2)
1300                   {
1301                     if ((src + 1) >= src_end)
1302                       goto ccl_read_multibyte_character_suspend;
1303                     reg[RRR] = i;
1304                     i = (*src++ & 0x7F);
1305                     reg[rrr] = ((i << 7) | (*src & 0x7F));
1306                     src++;
1307                   }
1308                 else if (i == PRE_LEADING_BYTE_PRIVATE_1)
1309                   {
1310                     if ((src + 1) >= src_end)
1311                       goto ccl_read_multibyte_character_suspend;
1312                     reg[RRR] = *src++;
1313                     reg[rrr] = (*src++ & 0x7F);
1314                   }
1315                 else if (i == PRE_LEADING_BYTE_PRIVATE_2)
1316                   {
1317                     if ((src + 2) >= src_end)
1318                       goto ccl_read_multibyte_character_suspend;
1319                     reg[RRR] = *src++;
1320                     i = (*src++ & 0x7F);
1321                     reg[rrr] = ((i << 7) | (*src & 0x7F));
1322                     src++;
1323                   }
1324                 else
1325                   {
1326                     /* INVALID CODE.  Return a single byte character.  */
1327                     reg[RRR] = LEADING_BYTE_ASCII;
1328                     reg[rrr] = i;
1329                   }
1330                 break;
1331               } while (1);
1332               break;
1333
1334             ccl_read_multibyte_character_suspend:
1335               src--;
1336               if (ccl->last_block)
1337                 {
1338                   ic = ccl->eof_ic;
1339                   goto ccl_repeat;
1340                 }
1341               else
1342                 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_SRC);
1343
1344               break;
1345
1346             case CCL_WriteMultibyteChar2:
1347               i = reg[RRR]; /* charset */
1348               if (i == LEADING_BYTE_ASCII)
1349                 i = reg[rrr] & 0xFF;
1350               else if (XCHARSET_DIMENSION (CHARSET_BY_LEADING_BYTE (i)) == 1)
1351                 i = (((i - FIELD2_TO_OFFICIAL_LEADING_BYTE) << 7)
1352                      | (reg[rrr] & 0x7F));
1353               else if (i < MAX_LEADING_BYTE_OFFICIAL_2)
1354                 i = ((i - FIELD1_TO_OFFICIAL_LEADING_BYTE) << 14) | reg[rrr];
1355               else
1356                 i = ((i - FIELD1_TO_PRIVATE_LEADING_BYTE) << 14) | reg[rrr];
1357
1358               CCL_WRITE_CHAR (i);
1359
1360               break;
1361
1362             case CCL_TranslateCharacter:
1363 #if 0
1364               /* XEmacs does not have translate_char, and its
1365                  equivalent nor.  We do nothing on this operation. */
1366               CCL_MAKE_CHAR (reg[RRR], reg[rrr], i);
1367               op = translate_char (GET_TRANSLATION_TABLE (reg[Rrr]),
1368                                    i, -1, 0, 0);
1369               SPLIT_CHAR (op, reg[RRR], i, j);
1370               if (j != -1)
1371                 i = (i << 7) | j;
1372
1373               reg[rrr] = i;
1374 #endif
1375               break;
1376
1377             case CCL_TranslateCharacterConstTbl:
1378 #if 0
1379               /* XEmacs does not have translate_char, and its
1380                  equivalent nor.  We do nothing on this operation. */
1381               op = XINT (ccl_prog[ic]); /* table */
1382               ic++;
1383               CCL_MAKE_CHAR (reg[RRR], reg[rrr], i);
1384               op = translate_char (GET_TRANSLATION_TABLE (op), i, -1, 0, 0);
1385               SPLIT_CHAR (op, reg[RRR], i, j);
1386               if (j != -1)
1387                 i = (i << 7) | j;
1388
1389               reg[rrr] = i;
1390 #endif
1391               break;
1392
1393             case CCL_IterateMultipleMap:
1394               {
1395                 Lisp_Object map, content, attrib, value;
1396                 int point, size, fin_ic;
1397
1398                 j = XINT (ccl_prog[ic++]); /* number of maps. */
1399                 fin_ic = ic + j;
1400                 op = reg[rrr];
1401                 if ((j > reg[RRR]) && (j >= 0))
1402                   {
1403                     ic += reg[RRR];
1404                     i = reg[RRR];
1405                   }
1406                 else
1407                   {
1408                     reg[RRR] = -1;
1409                     ic = fin_ic;
1410                     break;
1411                   }
1412
1413                 for (;i < j;i++)
1414                   {
1415
1416                     size = XVECTOR (Vcode_conversion_map_vector)->size;
1417                     point = XINT (ccl_prog[ic++]);
1418                     if (point >= size) continue;
1419                     map =
1420                       XVECTOR (Vcode_conversion_map_vector)->contents[point];
1421
1422                     /* Check map validity.  */
1423                     if (!CONSP (map)) continue;
1424                     map = XCDR (map);
1425                     if (!VECTORP (map)) continue;
1426                     size = XVECTOR (map)->size;
1427                     if (size <= 1) continue;
1428
1429                     content = XVECTOR (map)->contents[0];
1430
1431                     /* check map type,
1432                        [STARTPOINT VAL1 VAL2 ...] or
1433                        [t ELEMENT STARTPOINT ENDPOINT]  */
1434                     if (INTP (content))
1435                       {
1436                         point = XUINT (content);
1437                         point = op - point + 1;
1438                         if (!((point >= 1) && (point < size))) continue;
1439                         content = XVECTOR (map)->contents[point];
1440                       }
1441                     else if (EQ (content, Qt))
1442                       {
1443                         if (size != 4) continue;
1444                         if ((op >= XUINT (XVECTOR (map)->contents[2]))
1445                             && (op < XUINT (XVECTOR (map)->contents[3])))
1446                           content = XVECTOR (map)->contents[1];
1447                         else
1448                           continue;
1449                       }
1450                     else
1451                       continue;
1452
1453                     if (NILP (content))
1454                       continue;
1455                     else if (INTP (content))
1456                       {
1457                         reg[RRR] = i;
1458                         reg[rrr] = XINT(content);
1459                         break;
1460                       }
1461                     else if (EQ (content, Qt) || EQ (content, Qlambda))
1462                       {
1463                         reg[RRR] = i;
1464                         break;
1465                       }
1466                     else if (CONSP (content))
1467                       {
1468                         attrib = XCAR (content);
1469                         value = XCDR (content);
1470                         if (!INTP (attrib) || !INTP (value))
1471                           continue;
1472                         reg[RRR] = i;
1473                         reg[rrr] = XUINT (value);
1474                         break;
1475                       }
1476                     else if (SYMBOLP (content))
1477                       CCL_CALL_FOR_MAP_INSTRUCTION (content, fin_ic);
1478                     else
1479                       CCL_INVALID_CMD;
1480                   }
1481                 if (i == j)
1482                   reg[RRR] = -1;
1483                 ic = fin_ic;
1484               }
1485               break;
1486
1487             case CCL_MapMultiple:
1488               {
1489                 Lisp_Object map, content, attrib, value;
1490                 int point, size, map_vector_size;
1491                 int map_set_rest_length, fin_ic;
1492                 int current_ic = this_ic;
1493
1494                 /* inhibit recursive call on MapMultiple. */
1495                 if (stack_idx_of_map_multiple > 0)
1496                   {
1497                     if (stack_idx_of_map_multiple <= stack_idx)
1498                       {
1499                         stack_idx_of_map_multiple = 0;
1500                         mapping_stack_pointer = mapping_stack;
1501                         CCL_INVALID_CMD;
1502                       }
1503                   }
1504                 else
1505                   mapping_stack_pointer = mapping_stack;
1506                 stack_idx_of_map_multiple = 0;
1507
1508                 map_set_rest_length =
1509                   XINT (ccl_prog[ic++]); /* number of maps and separators. */
1510                 fin_ic = ic + map_set_rest_length;
1511                 op = reg[rrr];
1512
1513                 if ((map_set_rest_length > reg[RRR]) && (reg[RRR] >= 0))
1514                   {
1515                     ic += reg[RRR];
1516                     i = reg[RRR];
1517                     map_set_rest_length -= i;
1518                   }
1519                 else
1520                   {
1521                     ic = fin_ic;
1522                     reg[RRR] = -1;
1523                     mapping_stack_pointer = mapping_stack;
1524                     break;
1525                   }
1526
1527                 if (mapping_stack_pointer <= (mapping_stack + 1))
1528                   {
1529                     /* Set up initial state. */
1530                     mapping_stack_pointer = mapping_stack;
1531                     PUSH_MAPPING_STACK (0, op);
1532                     reg[RRR] = -1;
1533                   }
1534                 else
1535                   {
1536                     /* Recover after calling other ccl program. */
1537                     int orig_op;
1538
1539                     POP_MAPPING_STACK (map_set_rest_length, orig_op);
1540                     POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1541                     switch (op)
1542                       {
1543                       case -1:
1544                         /* Regard it as Qnil. */
1545                         op = orig_op;
1546                         i++;
1547                         ic++;
1548                         map_set_rest_length--;
1549                         break;
1550                       case -2:
1551                         /* Regard it as Qt. */
1552                         op = reg[rrr];
1553                         i++;
1554                         ic++;
1555                         map_set_rest_length--;
1556                         break;
1557                       case -3:
1558                         /* Regard it as Qlambda. */
1559                         op = orig_op;
1560                         i += map_set_rest_length;
1561                         ic += map_set_rest_length;
1562                         map_set_rest_length = 0;
1563                         break;
1564                       default:
1565                         /* Regard it as normal mapping. */
1566                         i += map_set_rest_length;
1567                         ic += map_set_rest_length;
1568                         POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1569                         break;
1570                       }
1571                   }
1572                 map_vector_size = XVECTOR (Vcode_conversion_map_vector)->size;
1573
1574                 do {
1575                   for (;map_set_rest_length > 0;i++, ic++, map_set_rest_length--)
1576                     {
1577                       point = XINT(ccl_prog[ic]);
1578                       if (point < 0)
1579                         {
1580                           /* +1 is for including separator. */
1581                           point = -point + 1;
1582                           if (mapping_stack_pointer
1583                               >= &mapping_stack[MAX_MAP_SET_LEVEL])
1584                             CCL_INVALID_CMD;
1585                           PUSH_MAPPING_STACK (map_set_rest_length - point,
1586                                               reg[rrr]);
1587                           map_set_rest_length = point;
1588                           reg[rrr] = op;
1589                           continue;
1590                         }
1591
1592                       if (point >= map_vector_size) continue;
1593                       map = (XVECTOR (Vcode_conversion_map_vector)
1594                              ->contents[point]);
1595
1596                       /* Check map validity.  */
1597                       if (!CONSP (map)) continue;
1598                       map = XCDR (map);
1599                       if (!VECTORP (map)) continue;
1600                       size = XVECTOR (map)->size;
1601                       if (size <= 1) continue;
1602
1603                       content = XVECTOR (map)->contents[0];
1604
1605                       /* check map type,
1606                          [STARTPOINT VAL1 VAL2 ...] or
1607                          [t ELEMENT STARTPOINT ENDPOINT]  */
1608                       if (INTP (content))
1609                         {
1610                           point = XUINT (content);
1611                           point = op - point + 1;
1612                           if (!((point >= 1) && (point < size))) continue;
1613                           content = XVECTOR (map)->contents[point];
1614                         }
1615                       else if (EQ (content, Qt))
1616                         {
1617                           if (size != 4) continue;
1618                           if ((op >= XUINT (XVECTOR (map)->contents[2])) &&
1619                               (op < XUINT (XVECTOR (map)->contents[3])))
1620                             content = XVECTOR (map)->contents[1];
1621                           else
1622                             continue;
1623                         }
1624                       else
1625                         continue;
1626
1627                       if (NILP (content))
1628                         continue;
1629
1630                       reg[RRR] = i;
1631                       if (INTP (content))
1632                         {
1633                           op = XINT (content);
1634                           i += map_set_rest_length - 1;
1635                           ic += map_set_rest_length - 1;
1636                           POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1637                           map_set_rest_length++;
1638                         }
1639                       else if (CONSP (content))
1640                         {
1641                           attrib = XCAR (content);
1642                           value = XCDR (content);
1643                           if (!INTP (attrib) || !INTP (value))
1644                             continue;
1645                           op = XUINT (value);
1646                           i += map_set_rest_length - 1;
1647                           ic += map_set_rest_length - 1;
1648                           POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1649                           map_set_rest_length++;
1650                         }
1651                       else if (EQ (content, Qt))
1652                         {
1653                           op = reg[rrr];
1654                         }
1655                       else if (EQ (content, Qlambda))
1656                         {
1657                           i += map_set_rest_length;
1658                           ic += map_set_rest_length;
1659                           break;
1660                         }
1661                       else if (SYMBOLP (content))
1662                         {
1663                           if (mapping_stack_pointer
1664                               >= &mapping_stack[MAX_MAP_SET_LEVEL])
1665                             CCL_INVALID_CMD;
1666                           PUSH_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1667                           PUSH_MAPPING_STACK (map_set_rest_length, op);
1668                           stack_idx_of_map_multiple = stack_idx + 1;
1669                           CCL_CALL_FOR_MAP_INSTRUCTION (content, current_ic);
1670                         }
1671                       else
1672                         CCL_INVALID_CMD;
1673                     }
1674                   if (mapping_stack_pointer <= (mapping_stack + 1))
1675                     break;
1676                   POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1677                   i += map_set_rest_length;
1678                   ic += map_set_rest_length;
1679                   POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1680                 } while (1);
1681
1682                 ic = fin_ic;
1683               }
1684               reg[rrr] = op;
1685               break;
1686
1687             case CCL_MapSingle:
1688               {
1689                 Lisp_Object map, attrib, value, content;
1690                 int size, point;
1691                 j = XINT (ccl_prog[ic++]); /* map_id */
1692                 op = reg[rrr];
1693                 if (j >= XVECTOR (Vcode_conversion_map_vector)->size)
1694                   {
1695                     reg[RRR] = -1;
1696                     break;
1697                   }
1698                 map = XVECTOR (Vcode_conversion_map_vector)->contents[j];
1699                 if (!CONSP (map))
1700                   {
1701                     reg[RRR] = -1;
1702                     break;
1703                   }
1704                 map = XCDR (map);
1705                 if (!VECTORP (map))
1706                   {
1707                     reg[RRR] = -1;
1708                     break;
1709                   }
1710                 size = XVECTOR (map)->size;
1711                 point = XUINT (XVECTOR (map)->contents[0]);
1712                 point = op - point + 1;
1713                 reg[RRR] = 0;
1714                 if ((size <= 1) ||
1715                     (!((point >= 1) && (point < size))))
1716                   reg[RRR] = -1;
1717                 else
1718                   {
1719                     reg[RRR] = 0;
1720                     content = XVECTOR (map)->contents[point];
1721                     if (NILP (content))
1722                       reg[RRR] = -1;
1723                     else if (INTP (content))
1724                       reg[rrr] = XINT (content);
1725                     else if (EQ (content, Qt));
1726                     else if (CONSP (content))
1727                       {
1728                         attrib = XCAR (content);
1729                         value = XCDR (content);
1730                         if (!INTP (attrib) || !INTP (value))
1731                           continue;
1732                         reg[rrr] = XUINT(value);
1733                         break;
1734                       }
1735                     else if (SYMBOLP (content))
1736                       CCL_CALL_FOR_MAP_INSTRUCTION (content, ic);
1737                     else
1738                       reg[RRR] = -1;
1739                   }
1740               }
1741               break;
1742
1743             default:
1744               CCL_INVALID_CMD;
1745             }
1746           break;
1747
1748         default:
1749           CCL_INVALID_CMD;
1750         }
1751     }
1752
1753  ccl_error_handler:
1754   if (destination)
1755     {
1756       /* We can insert an error message only if DESTINATION is
1757          specified and we still have a room to store the message
1758          there.  */
1759       char msg[256];
1760
1761       switch (ccl->status)
1762         {
1763         case CCL_STAT_INVALID_CMD:
1764           sprintf(msg, "\nCCL: Invalid command %x (ccl_code = %x) at %d.",
1765                   code & 0x1F, code, this_ic);
1766 #ifdef CCL_DEBUG
1767           {
1768             int i = ccl_backtrace_idx - 1;
1769             int j;
1770
1771             Dynarr_add_many (destination, (unsigned char *) msg, strlen (msg));
1772
1773             for (j = 0; j < CCL_DEBUG_BACKTRACE_LEN; j++, i--)
1774               {
1775                 if (i < 0) i = CCL_DEBUG_BACKTRACE_LEN - 1;
1776                 if (ccl_backtrace_table[i] == 0)
1777                   break;
1778                 sprintf(msg, " %d", ccl_backtrace_table[i]);
1779                 Dynarr_add_many (destination, (unsigned char *) msg, strlen (msg));
1780               }
1781             goto ccl_finish;
1782           }
1783 #endif
1784           break;
1785
1786         case CCL_STAT_QUIT:
1787           sprintf(msg, "\nCCL: Exited.");
1788           break;
1789
1790         default:
1791           sprintf(msg, "\nCCL: Unknown error type (%d).", ccl->status);
1792         }
1793
1794       Dynarr_add_many (destination, (unsigned char *) msg, strlen (msg));
1795     }
1796
1797  ccl_finish:
1798   ccl->ic = ic;
1799   ccl->stack_idx = stack_idx;
1800   ccl->prog = ccl_prog;
1801   if (consumed) *consumed = src - source;
1802   if (!destination)
1803     return 0;
1804   return Dynarr_length (destination);
1805 }
1806
1807 /* Resolve symbols in the specified CCL code (Lisp vector).  This
1808    function converts symbols of code conversion maps and character
1809    translation tables embedded in the CCL code into their ID numbers.
1810
1811    The return value is a vector (CCL itself or a new vector in which
1812    all symbols are resolved), Qt if resolving of some symbol failed,
1813    or nil if CCL contains invalid data.  */
1814
1815 static Lisp_Object
1816 resolve_symbol_ccl_program (Lisp_Object ccl)
1817 {
1818   int i, veclen, unresolved = 0;
1819   Lisp_Object result, contents, val;
1820
1821   result = ccl;
1822   veclen = XVECTOR (result)->size;
1823
1824   for (i = 0; i < veclen; i++)
1825     {
1826       contents = XVECTOR (result)->contents[i];
1827       if (INTP (contents))
1828         continue;
1829       else if (CONSP (contents)
1830                && SYMBOLP (XCAR (contents))
1831                && SYMBOLP (XCDR (contents)))
1832         {
1833           /* This is the new style for embedding symbols.  The form is
1834              (SYMBOL . PROPERTY).  (get SYMBOL PROPERTY) should give
1835              an index number.  */
1836
1837           if (EQ (result, ccl))
1838             result =  Fcopy_sequence (ccl);
1839
1840           val = Fget (XCAR (contents), XCDR (contents), Qnil);
1841           if (NATNUMP (val))
1842             XVECTOR (result)->contents[i] = val;
1843           else
1844             unresolved = 1;
1845           continue;
1846         }
1847       else if (SYMBOLP (contents))
1848         {
1849           /* This is the old style for embedding symbols.  This style
1850              may lead to a bug if, for instance, a translation table
1851              and a code conversion map have the same name.  */
1852           if (EQ (result, ccl))
1853             result = Fcopy_sequence (ccl);
1854
1855           val = Fget (contents, Qcode_conversion_map_id, Qnil);
1856           if (NATNUMP (val))
1857             XVECTOR (result)->contents[i] = val;
1858           else
1859             {
1860               val = Fget (contents, Qccl_program_idx, Qnil);
1861               if (NATNUMP (val))
1862                 XVECTOR (result)->contents[i] = val;
1863               else
1864                 unresolved = 1;
1865             }
1866           continue;
1867         }
1868       return Qnil;
1869     }
1870
1871   return (unresolved ? Qt : result);
1872 }
1873
1874 /* Return the compiled code (vector) of CCL program CCL_PROG.
1875    CCL_PROG is a name (symbol) of the program or already compiled
1876    code.  If necessary, resolve symbols in the compiled code to index
1877    numbers.  If we failed to get the compiled code or to resolve
1878    symbols, return Qnil.  */
1879
1880 static Lisp_Object
1881 ccl_get_compiled_code (Lisp_Object ccl_prog)
1882 {
1883   Lisp_Object val, slot;
1884
1885   if (VECTORP (ccl_prog))
1886     {
1887       val = resolve_symbol_ccl_program (ccl_prog);
1888       return (VECTORP (val) ? val : Qnil);
1889     }
1890   if (!SYMBOLP (ccl_prog))
1891     return Qnil;
1892
1893   val = Fget (ccl_prog, Qccl_program_idx, Qnil);
1894   if (! NATNUMP (val)
1895       || XINT (val) >= XVECTOR_LENGTH (Vccl_program_table))
1896     return Qnil;
1897   slot = XVECTOR_DATA (Vccl_program_table)[XINT (val)];
1898   if (! VECTORP (slot)
1899       || XVECTOR (slot)->size != 3
1900       || ! VECTORP (XVECTOR_DATA (slot)[1]))
1901     return Qnil;
1902   if (NILP (XVECTOR_DATA (slot)[2]))
1903     {
1904       val = resolve_symbol_ccl_program (XVECTOR_DATA (slot)[1]);
1905       if (! VECTORP (val))
1906         return Qnil;
1907       XVECTOR_DATA (slot)[1] = val;
1908       XVECTOR_DATA (slot)[2] = Qt;
1909     }
1910   return XVECTOR_DATA (slot)[1];
1911 }
1912
1913 /* Setup fields of the structure pointed by CCL appropriately for the
1914    execution of CCL program CCL_PROG.  CCL_PROG is the name (symbol)
1915    of the CCL program or the already compiled code (vector).
1916    Return 0 if we succeed this setup, else return -1.
1917
1918    If CCL_PROG is nil, we just reset the structure pointed by CCL.  */
1919 int
1920 setup_ccl_program (struct ccl_program *ccl, Lisp_Object ccl_prog)
1921 {
1922   int i;
1923
1924   if (! NILP (ccl_prog))
1925     {
1926       ccl_prog = ccl_get_compiled_code (ccl_prog);
1927       if (! VECTORP (ccl_prog))
1928         return -1;
1929       ccl->size = XVECTOR_LENGTH (ccl_prog);
1930       ccl->prog = XVECTOR_DATA (ccl_prog);
1931       ccl->eof_ic = XINT (XVECTOR_DATA (ccl_prog)[CCL_HEADER_EOF]);
1932       ccl->buf_magnification = XINT (XVECTOR_DATA (ccl_prog)[CCL_HEADER_BUF_MAG]);
1933     }
1934   ccl->ic = CCL_HEADER_MAIN;
1935   for (i = 0; i < 8; i++)
1936     ccl->reg[i] = 0;
1937   ccl->last_block = 0;
1938   ccl->private_state = 0;
1939   ccl->status = 0;
1940   ccl->stack_idx = 0;
1941   ccl->eol_type = CCL_CODING_EOL_LF;
1942   return 0;
1943 }
1944
1945 #ifdef emacs
1946
1947 DEFUN ("ccl-program-p", Fccl_program_p, 1, 1, 0, /*
1948 Return t if OBJECT is a CCL program name or a compiled CCL program code.
1949 See the documentation of  `define-ccl-program' for the detail of CCL program.
1950 */
1951        (object))
1952 {
1953   Lisp_Object val;
1954
1955   if (VECTORP (object))
1956     {
1957       val = resolve_symbol_ccl_program (object);
1958       return (VECTORP (val) ? Qt : Qnil);
1959     }
1960   if (!SYMBOLP (object))
1961     return Qnil;
1962
1963   val = Fget (object, Qccl_program_idx, Qnil);
1964   return ((! NATNUMP (val)
1965            || XINT (val) >= XVECTOR_LENGTH (Vccl_program_table))
1966           ? Qnil : Qt);
1967 }
1968
1969 DEFUN ("ccl-execute", Fccl_execute, 2, 2, 0, /*
1970 Execute CCL-PROGRAM with registers initialized by REGISTERS.
1971
1972 CCL-PROGRAM is a CCL program name (symbol)
1973 or a compiled code generated by `ccl-compile' (for backward compatibility,
1974 in this case, the overhead of the execution is bigger than the former case).
1975 No I/O commands should appear in CCL-PROGRAM.
1976
1977 REGISTERS is a vector of [R0 R1 ... R7] where RN is an initial value
1978  of Nth register.
1979
1980 As side effect, each element of REGISTERS holds the value of
1981  corresponding register after the execution.
1982
1983 See the documentation of `define-ccl-program' for the detail of CCL program.
1984 */
1985        (ccl_prog, reg))
1986 {
1987   struct ccl_program ccl;
1988   int i;
1989
1990   if (setup_ccl_program (&ccl, ccl_prog) < 0)
1991     error ("Invalid CCL program");
1992
1993   CHECK_VECTOR (reg);
1994   if (XVECTOR_LENGTH (reg) != 8)
1995     error ("Length of vector REGISTERS is not 8");
1996
1997   for (i = 0; i < 8; i++)
1998     ccl.reg[i] = (INTP (XVECTOR_DATA (reg)[i])
1999                   ? XINT (XVECTOR_DATA (reg)[i])
2000                   : 0);
2001
2002   ccl_driver (&ccl, (const unsigned char *)0,
2003               (unsigned_char_dynarr *)0, 0, (int *)0,
2004               CCL_MODE_ENCODING);
2005   QUIT;
2006   if (ccl.status != CCL_STAT_SUCCESS)
2007     error ("Error in CCL program at %dth code", ccl.ic);
2008
2009   for (i = 0; i < 8; i++)
2010     XSETINT (XVECTOR (reg)->contents[i], ccl.reg[i]);
2011   return Qnil;
2012 }
2013
2014 DEFUN ("ccl-execute-on-string", Fccl_execute_on_string,
2015        3, 4, 0, /*
2016 Execute CCL-PROGRAM with initial STATUS on STRING.
2017
2018 CCL-PROGRAM is a symbol registered by register-ccl-program,
2019 or a compiled code generated by `ccl-compile' (for backward compatibility,
2020 in this case, the execution is slower).
2021
2022 Read buffer is set to STRING, and write buffer is allocated automatically.
2023
2024 STATUS is a vector of [R0 R1 ... R7 IC], where
2025  R0..R7 are initial values of corresponding registers,
2026  IC is the instruction counter specifying from where to start the program.
2027 If R0..R7 are nil, they are initialized to 0.
2028 If IC is nil, it is initialized to head of the CCL program.
2029
2030 If optional 4th arg CONTINUE is non-nil, keep IC on read operation
2031 when read buffer is exhausted, else, IC is always set to the end of
2032 CCL-PROGRAM on exit.
2033
2034 It returns the contents of write buffer as a string,
2035  and as side effect, STATUS is updated.
2036
2037 See the documentation of `define-ccl-program' for the detail of CCL program.
2038 */
2039        (ccl_prog, status, string, continue_))
2040 {
2041   Lisp_Object val;
2042   struct ccl_program ccl;
2043   int i, produced;
2044   unsigned_char_dynarr *outbuf;
2045   struct gcpro gcpro1, gcpro2;
2046
2047   if (setup_ccl_program (&ccl, ccl_prog) < 0)
2048     error ("Invalid CCL program");
2049
2050   CHECK_VECTOR (status);
2051   if (XVECTOR (status)->size != 9)
2052     error ("Length of vector STATUS is not 9");
2053   CHECK_STRING (string);
2054
2055   GCPRO2 (status, string);
2056
2057   for (i = 0; i < 8; i++)
2058     {
2059       if (NILP (XVECTOR_DATA (status)[i]))
2060         XSETINT (XVECTOR_DATA (status)[i], 0);
2061       if (INTP (XVECTOR_DATA (status)[i]))
2062         ccl.reg[i] = XINT (XVECTOR_DATA (status)[i]);
2063     }
2064   if (INTP (XVECTOR (status)->contents[i]))
2065     {
2066       i = XINT (XVECTOR_DATA (status)[8]);
2067       if (ccl.ic < i && i < ccl.size)
2068         ccl.ic = i;
2069     }
2070   outbuf = Dynarr_new (unsigned_char);
2071   ccl.last_block = NILP (continue_);
2072   produced = ccl_driver (&ccl, XSTRING_DATA (string), outbuf,
2073                          XSTRING_LENGTH (string),
2074                          (int *) 0,
2075                          CCL_MODE_DECODING);
2076   for (i = 0; i < 8; i++)
2077     XSETINT (XVECTOR_DATA (status)[i], ccl.reg[i]);
2078   XSETINT (XVECTOR_DATA (status)[8], ccl.ic);
2079   UNGCPRO;
2080
2081   val = make_string (Dynarr_atp (outbuf, 0), produced);
2082   Dynarr_free (outbuf);
2083   QUIT;
2084   if (ccl.status == CCL_STAT_SUSPEND_BY_DST)
2085     error ("Output buffer for the CCL programs overflow");
2086   if (ccl.status != CCL_STAT_SUCCESS
2087       && ccl.status != CCL_STAT_SUSPEND_BY_SRC)
2088     error ("Error in CCL program at %dth code", ccl.ic);
2089
2090   return val;
2091 }
2092
2093 DEFUN ("register-ccl-program", Fregister_ccl_program,
2094        2, 2, 0, /*
2095 Register CCL program CCL-PROG as NAME in `ccl-program-table'.
2096 CCL-PROG should be a compiled CCL program (vector), or nil.
2097 If it is nil, just reserve NAME as a CCL program name.
2098 Return index number of the registered CCL program.
2099 */
2100        (name, ccl_prog))
2101 {
2102   int len = XVECTOR_LENGTH (Vccl_program_table);
2103   int idx;
2104   Lisp_Object resolved;
2105
2106   CHECK_SYMBOL (name);
2107   resolved = Qnil;
2108   if (!NILP (ccl_prog))
2109     {
2110       CHECK_VECTOR (ccl_prog);
2111       resolved = resolve_symbol_ccl_program (ccl_prog);
2112       if (! NILP (resolved))
2113         {
2114           ccl_prog = resolved;
2115           resolved = Qt;
2116         }
2117     }
2118
2119   for (idx = 0; idx < len; idx++)
2120     {
2121       Lisp_Object slot;
2122
2123       slot = XVECTOR_DATA (Vccl_program_table)[idx];
2124       if (!VECTORP (slot))
2125         /* This is the first unused slot.  Register NAME here.  */
2126         break;
2127
2128       if (EQ (name, XVECTOR_DATA (slot)[0]))
2129         {
2130           /* Update this slot.  */
2131           XVECTOR_DATA (slot)[1] = ccl_prog;
2132           XVECTOR_DATA (slot)[2] = resolved;
2133           return make_int (idx);
2134         }
2135     }
2136
2137   if (idx == len)
2138     {
2139       /* Extend the table.  */
2140       Lisp_Object new_table;
2141       int j;
2142
2143       new_table = Fmake_vector (make_int (len * 2), Qnil);
2144       for (j = 0; j < len; j++)
2145         XVECTOR_DATA (new_table)[j]
2146           = XVECTOR_DATA (Vccl_program_table)[j];
2147       Vccl_program_table = new_table;
2148     }
2149
2150   {
2151     Lisp_Object elt;
2152
2153     elt = Fmake_vector (make_int (3), Qnil);
2154     XVECTOR_DATA (elt)[0] = name;
2155     XVECTOR_DATA (elt)[1] = ccl_prog;
2156     XVECTOR_DATA (elt)[2] = resolved;
2157     XVECTOR_DATA (Vccl_program_table)[idx] = elt;
2158   }
2159
2160   Fput (name, Qccl_program_idx, make_int (idx));
2161   return make_int (idx);
2162 }
2163
2164 /* Register code conversion map.
2165    A code conversion map consists of numbers, Qt, Qnil, and Qlambda.
2166    The first element is start code point.
2167    The rest elements are mapped numbers.
2168    Symbol t means to map to an original number before mapping.
2169    Symbol nil means that the corresponding element is empty.
2170    Symbol lambda means to terminate mapping here.
2171 */
2172
2173 DEFUN ("register-code-conversion-map", Fregister_code_conversion_map,
2174        2, 2, 0, /*
2175 Register SYMBOL as code conversion map MAP.
2176 Return index number of the registered map.
2177 */
2178        (symbol, map))
2179 {
2180   int len = XVECTOR_LENGTH (Vcode_conversion_map_vector);
2181   int i;
2182   Lisp_Object idx;
2183
2184   CHECK_SYMBOL (symbol);
2185   CHECK_VECTOR (map);
2186
2187   for (i = 0; i < len; i++)
2188     {
2189       Lisp_Object slot = XVECTOR_DATA (Vcode_conversion_map_vector)[i];
2190
2191       if (!CONSP (slot))
2192         break;
2193
2194       if (EQ (symbol, XCAR (slot)))
2195         {
2196           idx = make_int (i);
2197           XCDR (slot) = map;
2198           Fput (symbol, Qcode_conversion_map, map);
2199           Fput (symbol, Qcode_conversion_map_id, idx);
2200           return idx;
2201         }
2202     }
2203
2204   if (i == len)
2205     {
2206       Lisp_Object new_vector = Fmake_vector (make_int (len * 2), Qnil);
2207       int j;
2208
2209       for (j = 0; j < len; j++)
2210         XVECTOR_DATA (new_vector)[j]
2211           = XVECTOR_DATA (Vcode_conversion_map_vector)[j];
2212       Vcode_conversion_map_vector = new_vector;
2213     }
2214
2215   idx = make_int (i);
2216   Fput (symbol, Qcode_conversion_map, map);
2217   Fput (symbol, Qcode_conversion_map_id, idx);
2218   XVECTOR_DATA (Vcode_conversion_map_vector)[i] = Fcons (symbol, map);
2219   return idx;
2220 }
2221
2222
2223 void
2224 syms_of_mule_ccl (void)
2225 {
2226   DEFSUBR (Fccl_program_p);
2227   DEFSUBR (Fccl_execute);
2228   DEFSUBR (Fccl_execute_on_string);
2229   DEFSUBR (Fregister_ccl_program);
2230   DEFSUBR (Fregister_code_conversion_map);
2231 }
2232
2233 void
2234 vars_of_mule_ccl (void)
2235 {
2236   staticpro (&Vccl_program_table);
2237   Vccl_program_table = Fmake_vector (make_int (32), Qnil);
2238
2239   defsymbol (&Qccl_program, "ccl-program");
2240   defsymbol (&Qccl_program_idx, "ccl-program-idx");
2241   defsymbol (&Qcode_conversion_map, "code-conversion-map");
2242   defsymbol (&Qcode_conversion_map_id, "code-conversion-map-id");
2243
2244   DEFVAR_LISP ("code-conversion-map-vector", &Vcode_conversion_map_vector /*
2245 Vector of code conversion maps.
2246 */ );
2247   Vcode_conversion_map_vector = Fmake_vector (make_int (16), Qnil);
2248
2249   DEFVAR_LISP ("font-ccl-encoder-alist", &Vfont_ccl_encoder_alist /*
2250 Alist of fontname patterns vs corresponding CCL program.
2251 Each element looks like (REGEXP . CCL-CODE),
2252  where CCL-CODE is a compiled CCL program.
2253 When a font whose name matches REGEXP is used for displaying a character,
2254  CCL-CODE is executed to calculate the code point in the font
2255  from the charset number and position code(s) of the character which are set
2256  in CCL registers R0, R1, and R2 before the execution.
2257 The code point in the font is set in CCL registers R1 and R2
2258  when the execution terminated.
2259 If the font is single-byte font, the register R2 is not used.
2260 */ );
2261   Vfont_ccl_encoder_alist = Qnil;
2262 }
2263
2264 #endif  /* emacs */