;;; cl-seq.el --- Common Lisp extensions for GNU Emacs Lisp (part three) ;; Copyright (C) 1993 Free Software Foundation, Inc. ;; Author: Dave Gillespie ;; Maintainer: XEmacs Development Team ;; Version: 2.02 ;; Keywords: extensions, dumped ;; This file is part of XEmacs. ;; XEmacs is free software; you can redistribute it and/or modify it ;; under the terms of the GNU General Public License as published by ;; the Free Software Foundation; either version 2, or (at your option) ;; any later version. ;; XEmacs is distributed in the hope that it will be useful, but ;; WITHOUT ANY WARRANTY; without even the implied warranty of ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ;; General Public License for more details. ;; You should have received a copy of the GNU General Public License ;; along with XEmacs; see the file COPYING. If not, write to the Free ;; Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA ;; 02111-1307, USA. ;;; Synched up with: FSF 19.34. ;;; Commentary: ;; This file is dumped with XEmacs. ;; These are extensions to Emacs Lisp that provide a degree of ;; Common Lisp compatibility, beyond what is already built-in ;; in Emacs Lisp. ;; ;; This package was written by Dave Gillespie; it is a complete ;; rewrite of Cesar Quiroz's original cl.el package of December 1986. ;; ;; This package works with Emacs 18, Emacs 19, and Lucid Emacs 19. ;; ;; Bug reports, comments, and suggestions are welcome! ;; This file contains the Common Lisp sequence and list functions ;; which take keyword arguments. ;; See cl.el for Change Log. ;;; Code: (or (memq 'cl-19 features) (error "Tried to load `cl-seq' before `cl'!")) ;;; We define these here so that this file can compile without having ;;; loaded the cl.el file already. (defmacro cl-push (x place) (list 'setq place (list 'cons x place))) (defmacro cl-pop (place) (list 'car (list 'prog1 place (list 'setq place (list 'cdr place))))) ;;; Keyword parsing. This is special-cased here so that we can compile ;;; this file independent from cl-macs. (defmacro cl-parsing-keywords (kwords other-keys &rest body) "Helper macro for functions with keyword arguments. This is a temporary solution, until keyword arguments are natively supported. Declare your function ending with (... &rest cl-keys), then wrap the function body in a call to `cl-parsing-keywords'. KWORDS is a list of keyword definitions. Each definition should be either a keyword or a list (KEYWORD DEFAULT-VALUE). In the former case, the default value is nil. The keywords are available in BODY as the name of the keyword, minus its initial colon and prepended with `cl-'. OTHER-KEYS specifies other keywords that are accepted but ignored. It is either the value 't' (ignore all other keys, equivalent to the &allow-other-keys argument declaration in Common Lisp) or a list in the same format as KWORDS. If keywords are given that are not in KWORDS and not allowed by OTHER-KEYS, an error will normally be signalled; but the caller can override this by specifying a non-nil value for the keyword :allow-other-keys (which defaults to t)." (cons 'let* (cons (mapcar (function (lambda (x) (let* ((var (if (consp x) (car x) x)) (mem (list 'car (list 'cdr (list 'memq (list 'quote var) 'cl-keys))))) (if (eq var ':test-not) (setq mem (list 'and mem (list 'setq 'cl-test mem) t))) (if (eq var ':if-not) (setq mem (list 'and mem (list 'setq 'cl-if mem) t))) (list (intern (format "cl-%s" (substring (symbol-name var) 1))) (if (consp x) (list 'or mem (car (cdr x))) mem))))) kwords) (append (and (not (eq other-keys t)) (list (list 'let '((cl-keys-temp cl-keys)) (list 'while 'cl-keys-temp (list 'or (list 'memq '(car cl-keys-temp) (list 'quote (mapcar (function (lambda (x) (if (consp x) (car x) x))) (append kwords other-keys)))) '(car (cdr (memq (quote :allow-other-keys) cl-keys))) '(error "Bad keyword argument %s" (car cl-keys-temp))) '(setq cl-keys-temp (cdr (cdr cl-keys-temp))))))) body)))) (put 'cl-parsing-keywords 'lisp-indent-function 2) (put 'cl-parsing-keywords 'edebug-form-spec '(sexp sexp &rest form)) (defmacro cl-check-key (x) (list 'if 'cl-key (list 'funcall 'cl-key x) x)) (defmacro cl-check-test-nokey (item x) (list 'cond (list 'cl-test (list 'eq (list 'not (list 'funcall 'cl-test item x)) 'cl-test-not)) (list 'cl-if (list 'eq (list 'not (list 'funcall 'cl-if x)) 'cl-if-not)) (list 't (list 'if (list 'numberp item) (list 'equal item x) (list 'eq item x))))) (defmacro cl-check-test (item x) (list 'cl-check-test-nokey item (list 'cl-check-key x))) (defmacro cl-check-match (x y) (setq x (list 'cl-check-key x) y (list 'cl-check-key y)) (list 'if 'cl-test (list 'eq (list 'not (list 'funcall 'cl-test x y)) 'cl-test-not) (list 'if (list 'numberp x) (list 'equal x y) (list 'eq x y)))) (put 'cl-check-key 'edebug-form-spec 'edebug-forms) (put 'cl-check-test 'edebug-form-spec 'edebug-forms) (put 'cl-check-test-nokey 'edebug-form-spec 'edebug-forms) (put 'cl-check-match 'edebug-form-spec 'edebug-forms) (defvar cl-test) (defvar cl-test-not) (defvar cl-if) (defvar cl-if-not) (defvar cl-key) (defun reduce (cl-func cl-seq &rest cl-keys) "Reduce two-argument FUNCTION across SEQUENCE. Keywords supported: :start :end :from-end :initial-value :key" (cl-parsing-keywords (:from-end (:start 0) :end :initial-value :key) () (or (listp cl-seq) (setq cl-seq (append cl-seq nil))) (setq cl-seq (subseq cl-seq cl-start cl-end)) (if cl-from-end (setq cl-seq (nreverse cl-seq))) (let ((cl-accum (cond ((memq ':initial-value cl-keys) cl-initial-value) (cl-seq (cl-check-key (cl-pop cl-seq))) (t (funcall cl-func))))) (if cl-from-end (while cl-seq (setq cl-accum (funcall cl-func (cl-check-key (cl-pop cl-seq)) cl-accum))) (while cl-seq (setq cl-accum (funcall cl-func cl-accum (cl-check-key (cl-pop cl-seq)))))) cl-accum))) (defun fill (seq item &rest cl-keys) "Fill the elements of SEQ with ITEM. Keywords supported: :start :end" (cl-parsing-keywords ((:start 0) :end) () (if (listp seq) (let ((p (nthcdr cl-start seq)) (n (if cl-end (- cl-end cl-start) 8000000))) (while (and p (>= (setq n (1- n)) 0)) (setcar p item) (setq p (cdr p)))) (or cl-end (setq cl-end (length seq))) (if (and (= cl-start 0) (= cl-end (length seq))) (fillarray seq item) (while (< cl-start cl-end) (aset seq cl-start item) (setq cl-start (1+ cl-start))))) seq)) (defun replace (cl-seq1 cl-seq2 &rest cl-keys) "Replace the elements of SEQ1 with the elements of SEQ2. SEQ1 is destructively modified, then returned. Keywords supported: :start1 :end1 :start2 :end2" (cl-parsing-keywords ((:start1 0) :end1 (:start2 0) :end2) () (if (and (eq cl-seq1 cl-seq2) (<= cl-start2 cl-start1)) (or (= cl-start1 cl-start2) (let* ((cl-len (length cl-seq1)) (cl-n (min (- (or cl-end1 cl-len) cl-start1) (- (or cl-end2 cl-len) cl-start2)))) (while (>= (setq cl-n (1- cl-n)) 0) (cl-set-elt cl-seq1 (+ cl-start1 cl-n) (elt cl-seq2 (+ cl-start2 cl-n)))))) (if (listp cl-seq1) (let ((cl-p1 (nthcdr cl-start1 cl-seq1)) (cl-n1 (if cl-end1 (- cl-end1 cl-start1) 4000000))) (if (listp cl-seq2) (let ((cl-p2 (nthcdr cl-start2 cl-seq2)) (cl-n (min cl-n1 (if cl-end2 (- cl-end2 cl-start2) 4000000)))) (while (and cl-p1 cl-p2 (>= (setq cl-n (1- cl-n)) 0)) (setcar cl-p1 (car cl-p2)) (setq cl-p1 (cdr cl-p1) cl-p2 (cdr cl-p2)))) (setq cl-end2 (min (or cl-end2 (length cl-seq2)) (+ cl-start2 cl-n1))) (while (and cl-p1 (< cl-start2 cl-end2)) (setcar cl-p1 (aref cl-seq2 cl-start2)) (setq cl-p1 (cdr cl-p1) cl-start2 (1+ cl-start2))))) (setq cl-end1 (min (or cl-end1 (length cl-seq1)) (+ cl-start1 (- (or cl-end2 (length cl-seq2)) cl-start2)))) (if (listp cl-seq2) (let ((cl-p2 (nthcdr cl-start2 cl-seq2))) (while (< cl-start1 cl-end1) (aset cl-seq1 cl-start1 (car cl-p2)) (setq cl-p2 (cdr cl-p2) cl-start1 (1+ cl-start1)))) (while (< cl-start1 cl-end1) (aset cl-seq1 cl-start1 (aref cl-seq2 cl-start2)) (setq cl-start2 (1+ cl-start2) cl-start1 (1+ cl-start1)))))) cl-seq1)) (defun remove* (cl-item cl-seq &rest cl-keys) "Remove all occurrences of ITEM in SEQ. This is a non-destructive function; it makes a copy of SEQ if necessary to avoid corrupting the original SEQ. Keywords supported: :test :test-not :key :count :start :end :from-end" (cl-parsing-keywords (:test :test-not :key :if :if-not :count :from-end (:start 0) :end) () (if (<= (or cl-count (setq cl-count 8000000)) 0) cl-seq (if (or (nlistp cl-seq) (and cl-from-end (< cl-count 4000000))) (let ((cl-i (cl-position cl-item cl-seq cl-start cl-end cl-from-end))) (if cl-i (let ((cl-res (apply 'delete* cl-item (append cl-seq nil) (append (if cl-from-end (list ':end (1+ cl-i)) (list ':start cl-i)) cl-keys)))) (if (listp cl-seq) cl-res (if (stringp cl-seq) (concat cl-res) (vconcat cl-res)))) cl-seq)) (setq cl-end (- (or cl-end 8000000) cl-start)) (if (= cl-start 0) (while (and cl-seq (> cl-end 0) (cl-check-test cl-item (car cl-seq)) (setq cl-end (1- cl-end) cl-seq (cdr cl-seq)) (> (setq cl-count (1- cl-count)) 0)))) (if (and (> cl-count 0) (> cl-end 0)) (let ((cl-p (if (> cl-start 0) (nthcdr cl-start cl-seq) (setq cl-end (1- cl-end)) (cdr cl-seq)))) (while (and cl-p (> cl-end 0) (not (cl-check-test cl-item (car cl-p)))) (setq cl-p (cdr cl-p) cl-end (1- cl-end))) (if (and cl-p (> cl-end 0)) (nconc (ldiff cl-seq cl-p) (if (= cl-count 1) (cdr cl-p) (and (cdr cl-p) (apply 'delete* cl-item (copy-sequence (cdr cl-p)) ':start 0 ':end (1- cl-end) ':count (1- cl-count) cl-keys)))) cl-seq)) cl-seq))))) (defun remove-if (cl-pred cl-list &rest cl-keys) "Remove all items satisfying PREDICATE in SEQ. This is a non-destructive function; it makes a copy of SEQ if necessary to avoid corrupting the original SEQ. Keywords supported: :key :count :start :end :from-end" (apply 'remove* nil cl-list ':if cl-pred cl-keys)) (defun remove-if-not (cl-pred cl-list &rest cl-keys) "Remove all items not satisfying PREDICATE in SEQ. This is a non-destructive function; it makes a copy of SEQ if necessary to avoid corrupting the original SEQ. Keywords supported: :key :count :start :end :from-end" (apply 'remove* nil cl-list ':if-not cl-pred cl-keys)) (defun delete* (cl-item cl-seq &rest cl-keys) "Remove all occurrences of ITEM in SEQ. This is a destructive function; it reuses the storage of SEQ whenever possible. Keywords supported: :test :test-not :key :count :start :end :from-end" (cl-parsing-keywords (:test :test-not :key :if :if-not :count :from-end (:start 0) :end) () (if (<= (or cl-count (setq cl-count 8000000)) 0) cl-seq (if (listp cl-seq) (if (and cl-from-end (< cl-count 4000000)) (let (cl-i) (while (and (>= (setq cl-count (1- cl-count)) 0) (setq cl-i (cl-position cl-item cl-seq cl-start cl-end cl-from-end))) (if (= cl-i 0) (setq cl-seq (cdr cl-seq)) (let ((cl-tail (nthcdr (1- cl-i) cl-seq))) (setcdr cl-tail (cdr (cdr cl-tail))))) (setq cl-end cl-i)) cl-seq) (setq cl-end (- (or cl-end 8000000) cl-start)) (if (= cl-start 0) (progn (while (and cl-seq (> cl-end 0) (cl-check-test cl-item (car cl-seq)) (setq cl-end (1- cl-end) cl-seq (cdr cl-seq)) (> (setq cl-count (1- cl-count)) 0))) (setq cl-end (1- cl-end))) (setq cl-start (1- cl-start))) (if (and (> cl-count 0) (> cl-end 0)) (let ((cl-p (nthcdr cl-start cl-seq))) (while (and (cdr cl-p) (> cl-end 0)) (if (cl-check-test cl-item (car (cdr cl-p))) (progn (setcdr cl-p (cdr (cdr cl-p))) (if (= (setq cl-count (1- cl-count)) 0) (setq cl-end 1))) (setq cl-p (cdr cl-p))) (setq cl-end (1- cl-end))))) cl-seq) (apply 'remove* cl-item cl-seq cl-keys))))) (defun delete-if (cl-pred cl-list &rest cl-keys) "Remove all items satisfying PREDICATE in SEQ. This is a destructive function; it reuses the storage of SEQ whenever possible. Keywords supported: :key :count :start :end :from-end" (apply 'delete* nil cl-list ':if cl-pred cl-keys)) (defun delete-if-not (cl-pred cl-list &rest cl-keys) "Remove all items not satisfying PREDICATE in SEQ. This is a destructive function; it reuses the storage of SEQ whenever possible. Keywords supported: :key :count :start :end :from-end" (apply 'delete* nil cl-list ':if-not cl-pred cl-keys)) (or (and (fboundp 'delete) (subrp (symbol-function 'delete))) (defalias 'delete (function (lambda (x y) (delete* x y ':test 'equal))))) (defun remove (cl-item cl-seq) "Remove all occurrences of ITEM in SEQ, testing with `equal' This is a non-destructive function; it makes a copy of SEQ if necessary to avoid corrupting the original SEQ. Also see: `remove*', `delete', `delete*'" (remove* cl-item cl-seq ':test 'equal)) (defun remq (cl-elt cl-list) "Remove all occurrences of ELT in LIST, comparing with `eq'. This is a non-destructive function; it makes a copy of LIST to avoid corrupting the original LIST. Also see: `delq', `delete', `delete*', `remove', `remove*'." (if (memq cl-elt cl-list) (delq cl-elt (copy-list cl-list)) cl-list)) (defun remove-duplicates (cl-seq &rest cl-keys) "Return a copy of SEQ with all duplicate elements removed. Keywords supported: :test :test-not :key :start :end :from-end" (cl-delete-duplicates cl-seq cl-keys t)) (defun delete-duplicates (cl-seq &rest cl-keys) "Remove all duplicate elements from SEQ (destructively). Keywords supported: :test :test-not :key :start :end :from-end" (cl-delete-duplicates cl-seq cl-keys nil)) (defun cl-delete-duplicates (cl-seq cl-keys cl-copy) (if (listp cl-seq) (cl-parsing-keywords (:test :test-not :key (:start 0) :end :from-end :if) () (if cl-from-end (let ((cl-p (nthcdr cl-start cl-seq)) cl-i) (setq cl-end (- (or cl-end (length cl-seq)) cl-start)) (while (> cl-end 1) (setq cl-i 0) (while (setq cl-i (cl-position (cl-check-key (car cl-p)) (cdr cl-p) cl-i (1- cl-end))) (if cl-copy (setq cl-seq (copy-sequence cl-seq) cl-p (nthcdr cl-start cl-seq) cl-copy nil)) (let ((cl-tail (nthcdr cl-i cl-p))) (setcdr cl-tail (cdr (cdr cl-tail)))) (setq cl-end (1- cl-end))) (setq cl-p (cdr cl-p) cl-end (1- cl-end) cl-start (1+ cl-start))) cl-seq) (setq cl-end (- (or cl-end (length cl-seq)) cl-start)) (while (and (cdr cl-seq) (= cl-start 0) (> cl-end 1) (cl-position (cl-check-key (car cl-seq)) (cdr cl-seq) 0 (1- cl-end))) (setq cl-seq (cdr cl-seq) cl-end (1- cl-end))) (let ((cl-p (if (> cl-start 0) (nthcdr (1- cl-start) cl-seq) (setq cl-end (1- cl-end) cl-start 1) cl-seq))) (while (and (cdr (cdr cl-p)) (> cl-end 1)) (if (cl-position (cl-check-key (car (cdr cl-p))) (cdr (cdr cl-p)) 0 (1- cl-end)) (progn (if cl-copy (setq cl-seq (copy-sequence cl-seq) cl-p (nthcdr (1- cl-start) cl-seq) cl-copy nil)) (setcdr cl-p (cdr (cdr cl-p)))) (setq cl-p (cdr cl-p))) (setq cl-end (1- cl-end) cl-start (1+ cl-start))) cl-seq))) (let ((cl-res (cl-delete-duplicates (append cl-seq nil) cl-keys nil))) (if (stringp cl-seq) (concat cl-res) (vconcat cl-res))))) (defun substitute (cl-new cl-old cl-seq &rest cl-keys) "Substitute NEW for OLD in SEQ. This is a non-destructive function; it makes a copy of SEQ if necessary to avoid corrupting the original SEQ. Keywords supported: :test :test-not :key :count :start :end :from-end" (cl-parsing-keywords (:test :test-not :key :if :if-not :count (:start 0) :end :from-end) () (if (or (eq cl-old cl-new) (<= (or cl-count (setq cl-from-end nil cl-count 8000000)) 0)) cl-seq (let ((cl-i (cl-position cl-old cl-seq cl-start cl-end))) (if (not cl-i) cl-seq (setq cl-seq (copy-sequence cl-seq)) (or cl-from-end (progn (cl-set-elt cl-seq cl-i cl-new) (setq cl-i (1+ cl-i) cl-count (1- cl-count)))) (apply 'nsubstitute cl-new cl-old cl-seq ':count cl-count ':start cl-i cl-keys)))))) (defun substitute-if (cl-new cl-pred cl-list &rest cl-keys) "Substitute NEW for all items satisfying PREDICATE in SEQ. This is a non-destructive function; it makes a copy of SEQ if necessary to avoid corrupting the original SEQ. Keywords supported: :key :count :start :end :from-end" (apply 'substitute cl-new nil cl-list ':if cl-pred cl-keys)) (defun substitute-if-not (cl-new cl-pred cl-list &rest cl-keys) "Substitute NEW for all items not satisfying PREDICATE in SEQ. This is a non-destructive function; it makes a copy of SEQ if necessary to avoid corrupting the original SEQ. Keywords supported: :key :count :start :end :from-end" (apply 'substitute cl-new nil cl-list ':if-not cl-pred cl-keys)) (defun nsubstitute (cl-new cl-old cl-seq &rest cl-keys) "Substitute NEW for OLD in SEQ. This is a destructive function; it reuses the storage of SEQ whenever possible. Keywords supported: :test :test-not :key :count :start :end :from-end" (cl-parsing-keywords (:test :test-not :key :if :if-not :count (:start 0) :end :from-end) () (or (eq cl-old cl-new) (<= (or cl-count (setq cl-count 8000000)) 0) (if (and (listp cl-seq) (or (not cl-from-end) (> cl-count 4000000))) (let ((cl-p (nthcdr cl-start cl-seq))) (setq cl-end (- (or cl-end 8000000) cl-start)) (while (and cl-p (> cl-end 0) (> cl-count 0)) (if (cl-check-test cl-old (car cl-p)) (progn (setcar cl-p cl-new) (setq cl-count (1- cl-count)))) (setq cl-p (cdr cl-p) cl-end (1- cl-end)))) (or cl-end (setq cl-end (length cl-seq))) (if cl-from-end (while (and (< cl-start cl-end) (> cl-count 0)) (setq cl-end (1- cl-end)) (if (cl-check-test cl-old (elt cl-seq cl-end)) (progn (cl-set-elt cl-seq cl-end cl-new) (setq cl-count (1- cl-count))))) (while (and (< cl-start cl-end) (> cl-count 0)) (if (cl-check-test cl-old (aref cl-seq cl-start)) (progn (aset cl-seq cl-start cl-new) (setq cl-count (1- cl-count)))) (setq cl-start (1+ cl-start)))))) cl-seq)) (defun nsubstitute-if (cl-new cl-pred cl-list &rest cl-keys) "Substitute NEW for all items satisfying PREDICATE in SEQ. This is a destructive function; it reuses the storage of SEQ whenever possible. Keywords supported: :key :count :start :end :from-end" (apply 'nsubstitute cl-new nil cl-list ':if cl-pred cl-keys)) (defun nsubstitute-if-not (cl-new cl-pred cl-list &rest cl-keys) "Substitute NEW for all items not satisfying PREDICATE in SEQ. This is a destructive function; it reuses the storage of SEQ whenever possible. Keywords supported: :key :count :start :end :from-end" (apply 'nsubstitute cl-new nil cl-list ':if-not cl-pred cl-keys)) (defun find (cl-item cl-seq &rest cl-keys) "Find the first occurrence of ITEM in LIST. Return the matching ITEM, or nil if not found. Keywords supported: :test :test-not :key :start :end :from-end" (let ((cl-pos (apply 'position cl-item cl-seq cl-keys))) (and cl-pos (elt cl-seq cl-pos)))) (defun find-if (cl-pred cl-list &rest cl-keys) "Find the first item satisfying PREDICATE in LIST. Return the matching ITEM, or nil if not found. Keywords supported: :key :start :end :from-end" (apply 'find nil cl-list ':if cl-pred cl-keys)) (defun find-if-not (cl-pred cl-list &rest cl-keys) "Find the first item not satisfying PREDICATE in LIST. Return the matching ITEM, or nil if not found. Keywords supported: :key :start :end :from-end" (apply 'find nil cl-list ':if-not cl-pred cl-keys)) (defun position (cl-item cl-seq &rest cl-keys) "Find the first occurrence of ITEM in LIST. Return the index of the matching item, or nil if not found. Keywords supported: :test :test-not :key :start :end :from-end" (cl-parsing-keywords (:test :test-not :key :if :if-not (:start 0) :end :from-end) () (cl-position cl-item cl-seq cl-start cl-end cl-from-end))) (defun cl-position (cl-item cl-seq cl-start &optional cl-end cl-from-end) (if (listp cl-seq) (let ((cl-p (nthcdr cl-start cl-seq))) (or cl-end (setq cl-end 8000000)) (let ((cl-res nil)) (while (and cl-p (< cl-start cl-end) (or (not cl-res) cl-from-end)) (if (cl-check-test cl-item (car cl-p)) (setq cl-res cl-start)) (setq cl-p (cdr cl-p) cl-start (1+ cl-start))) cl-res)) (or cl-end (setq cl-end (length cl-seq))) (if cl-from-end (progn (while (and (>= (setq cl-end (1- cl-end)) cl-start) (not (cl-check-test cl-item (aref cl-seq cl-end))))) (and (>= cl-end cl-start) cl-end)) (while (and (< cl-start cl-end) (not (cl-check-test cl-item (aref cl-seq cl-start)))) (setq cl-start (1+ cl-start))) (and (< cl-start cl-end) cl-start)))) (defun position-if (cl-pred cl-list &rest cl-keys) "Find the first item satisfying PREDICATE in LIST. Return the index of the matching item, or nil if not found. Keywords supported: :key :start :end :from-end" (apply 'position nil cl-list ':if cl-pred cl-keys)) (defun position-if-not (cl-pred cl-list &rest cl-keys) "Find the first item not satisfying PREDICATE in LIST. Return the index of the matching item, or nil if not found. Keywords supported: :key :start :end :from-end" (apply 'position nil cl-list ':if-not cl-pred cl-keys)) (defun count (cl-item cl-seq &rest cl-keys) "Count the number of occurrences of ITEM in LIST. Keywords supported: :test :test-not :key :start :end" (cl-parsing-keywords (:test :test-not :key :if :if-not (:start 0) :end) () (let ((cl-count 0) cl-x) (or cl-end (setq cl-end (length cl-seq))) (if (consp cl-seq) (setq cl-seq (nthcdr cl-start cl-seq))) (while (< cl-start cl-end) (setq cl-x (if (consp cl-seq) (cl-pop cl-seq) (aref cl-seq cl-start))) (if (cl-check-test cl-item cl-x) (setq cl-count (1+ cl-count))) (setq cl-start (1+ cl-start))) cl-count))) (defun count-if (cl-pred cl-list &rest cl-keys) "Count the number of items satisfying PREDICATE in LIST. Keywords supported: :key :start :end" (apply 'count nil cl-list ':if cl-pred cl-keys)) (defun count-if-not (cl-pred cl-list &rest cl-keys) "Count the number of items not satisfying PREDICATE in LIST. Keywords supported: :key :start :end" (apply 'count nil cl-list ':if-not cl-pred cl-keys)) (defun mismatch (cl-seq1 cl-seq2 &rest cl-keys) "Compare SEQ1 with SEQ2, return index of first mismatching element. Return nil if the sequences match. If one sequence is a prefix of the other, the return value indicates the end of the shorted sequence. Keywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end" (cl-parsing-keywords (:test :test-not :key :from-end (:start1 0) :end1 (:start2 0) :end2) () (or cl-end1 (setq cl-end1 (length cl-seq1))) (or cl-end2 (setq cl-end2 (length cl-seq2))) (if cl-from-end (progn (while (and (< cl-start1 cl-end1) (< cl-start2 cl-end2) (cl-check-match (elt cl-seq1 (1- cl-end1)) (elt cl-seq2 (1- cl-end2)))) (setq cl-end1 (1- cl-end1) cl-end2 (1- cl-end2))) (and (or (< cl-start1 cl-end1) (< cl-start2 cl-end2)) (1- cl-end1))) (let ((cl-p1 (and (listp cl-seq1) (nthcdr cl-start1 cl-seq1))) (cl-p2 (and (listp cl-seq2) (nthcdr cl-start2 cl-seq2)))) (while (and (< cl-start1 cl-end1) (< cl-start2 cl-end2) (cl-check-match (if cl-p1 (car cl-p1) (aref cl-seq1 cl-start1)) (if cl-p2 (car cl-p2) (aref cl-seq2 cl-start2)))) (setq cl-p1 (cdr cl-p1) cl-p2 (cdr cl-p2) cl-start1 (1+ cl-start1) cl-start2 (1+ cl-start2))) (and (or (< cl-start1 cl-end1) (< cl-start2 cl-end2)) cl-start1))))) (defun search (cl-seq1 cl-seq2 &rest cl-keys) "Search for SEQ1 as a subsequence of SEQ2. Return the index of the leftmost element of the first match found; return nil if there are no matches. Keywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end" (cl-parsing-keywords (:test :test-not :key :from-end (:start1 0) :end1 (:start2 0) :end2) () (or cl-end1 (setq cl-end1 (length cl-seq1))) (or cl-end2 (setq cl-end2 (length cl-seq2))) (if (>= cl-start1 cl-end1) (if cl-from-end cl-end2 cl-start2) (let* ((cl-len (- cl-end1 cl-start1)) (cl-first (cl-check-key (elt cl-seq1 cl-start1))) (cl-if nil) cl-pos) (setq cl-end2 (- cl-end2 (1- cl-len))) (while (and (< cl-start2 cl-end2) (setq cl-pos (cl-position cl-first cl-seq2 cl-start2 cl-end2 cl-from-end)) (apply 'mismatch cl-seq1 cl-seq2 ':start1 (1+ cl-start1) ':end1 cl-end1 ':start2 (1+ cl-pos) ':end2 (+ cl-pos cl-len) ':from-end nil cl-keys)) (if cl-from-end (setq cl-end2 cl-pos) (setq cl-start2 (1+ cl-pos)))) (and (< cl-start2 cl-end2) cl-pos))))) (defun sort* (cl-seq cl-pred &rest cl-keys) "Sort the argument SEQUENCE according to PREDICATE. This is a destructive function; it reuses the storage of SEQUENCE if possible. Keywords supported: :key" (if (nlistp cl-seq) (replace cl-seq (apply 'sort* (append cl-seq nil) cl-pred cl-keys)) (cl-parsing-keywords (:key) () (if (memq cl-key '(nil identity)) (sort cl-seq cl-pred) (sort cl-seq (function (lambda (cl-x cl-y) (funcall cl-pred (funcall cl-key cl-x) (funcall cl-key cl-y))))))))) (defun stable-sort (cl-seq cl-pred &rest cl-keys) "Sort the argument SEQUENCE stably according to PREDICATE. This is a destructive function; it reuses the storage of SEQUENCE if possible. Keywords supported: :key" (apply 'sort* cl-seq cl-pred cl-keys)) (defun merge (cl-type cl-seq1 cl-seq2 cl-pred &rest cl-keys) "Destructively merge the two sequences to produce a new sequence. TYPE is the sequence type to return, SEQ1 and SEQ2 are the two argument sequences, and PRED is a `less-than' predicate on the elements. Keywords supported: :key" (or (listp cl-seq1) (setq cl-seq1 (append cl-seq1 nil))) (or (listp cl-seq2) (setq cl-seq2 (append cl-seq2 nil))) (cl-parsing-keywords (:key) () (let ((cl-res nil)) (while (and cl-seq1 cl-seq2) (if (funcall cl-pred (cl-check-key (car cl-seq2)) (cl-check-key (car cl-seq1))) (cl-push (cl-pop cl-seq2) cl-res) (cl-push (cl-pop cl-seq1) cl-res))) (coerce (nconc (nreverse cl-res) cl-seq1 cl-seq2) cl-type)))) ;;; See compiler macro in cl-macs.el (defun member* (cl-item cl-list &rest cl-keys) "Find the first occurrence of ITEM in LIST. Return the sublist of LIST whose car is ITEM. Keywords supported: :test :test-not :key" (if cl-keys (cl-parsing-keywords (:test :test-not :key :if :if-not) () (while (and cl-list (not (cl-check-test cl-item (car cl-list)))) (setq cl-list (cdr cl-list))) cl-list) (if (and (numberp cl-item) (not (integerp cl-item))) (member cl-item cl-list) (memq cl-item cl-list)))) (defun member-if (cl-pred cl-list &rest cl-keys) "Find the first item satisfying PREDICATE in LIST. Return the sublist of LIST whose car matches. Keywords supported: :key" (apply 'member* nil cl-list ':if cl-pred cl-keys)) (defun member-if-not (cl-pred cl-list &rest cl-keys) "Find the first item not satisfying PREDICATE in LIST. Return the sublist of LIST whose car matches. Keywords supported: :key" (apply 'member* nil cl-list ':if-not cl-pred cl-keys)) (defun cl-adjoin (cl-item cl-list &rest cl-keys) (if (cl-parsing-keywords (:key) t (apply 'member* (cl-check-key cl-item) cl-list cl-keys)) cl-list (cons cl-item cl-list))) ;;; See compiler macro in cl-macs.el (defun assoc* (cl-item cl-alist &rest cl-keys) "Find the first item whose car matches ITEM in LIST. Keywords supported: :test :test-not :key" (if cl-keys (cl-parsing-keywords (:test :test-not :key :if :if-not) () (while (and cl-alist (or (not (consp (car cl-alist))) (not (cl-check-test cl-item (car (car cl-alist)))))) (setq cl-alist (cdr cl-alist))) (and cl-alist (car cl-alist))) (if (and (numberp cl-item) (not (integerp cl-item))) (assoc cl-item cl-alist) (assq cl-item cl-alist)))) (defun assoc-if (cl-pred cl-list &rest cl-keys) "Find the first item whose car satisfies PREDICATE in LIST. Keywords supported: :key" (apply 'assoc* nil cl-list ':if cl-pred cl-keys)) (defun assoc-if-not (cl-pred cl-list &rest cl-keys) "Find the first item whose car does not satisfy PREDICATE in LIST. Keywords supported: :key" (apply 'assoc* nil cl-list ':if-not cl-pred cl-keys)) (defun rassoc* (cl-item cl-alist &rest cl-keys) "Find the first item whose cdr matches ITEM in LIST. Keywords supported: :test :test-not :key" (if (or cl-keys (numberp cl-item)) (cl-parsing-keywords (:test :test-not :key :if :if-not) () (while (and cl-alist (or (not (consp (car cl-alist))) (not (cl-check-test cl-item (cdr (car cl-alist)))))) (setq cl-alist (cdr cl-alist))) (and cl-alist (car cl-alist))) (rassq cl-item cl-alist))) (defun rassoc-if (cl-pred cl-list &rest cl-keys) "Find the first item whose cdr satisfies PREDICATE in LIST. Keywords supported: :key" (apply 'rassoc* nil cl-list ':if cl-pred cl-keys)) (defun rassoc-if-not (cl-pred cl-list &rest cl-keys) "Find the first item whose cdr does not satisfy PREDICATE in LIST. Keywords supported: :key" (apply 'rassoc* nil cl-list ':if-not cl-pred cl-keys)) (defun union (cl-list1 cl-list2 &rest cl-keys) "Combine LIST1 and LIST2 using a set-union operation. The result list contains all items that appear in either LIST1 or LIST2. This is a non-destructive function; it makes a copy of the data if necessary to avoid corrupting the original LIST1 and LIST2. Keywords supported: :test :test-not :key" (cond ((null cl-list1) cl-list2) ((null cl-list2) cl-list1) ((equal cl-list1 cl-list2) cl-list1) (t (or (>= (length cl-list1) (length cl-list2)) (setq cl-list1 (prog1 cl-list2 (setq cl-list2 cl-list1)))) (while cl-list2 (if (or cl-keys (numberp (car cl-list2))) (setq cl-list1 (apply 'adjoin (car cl-list2) cl-list1 cl-keys)) (or (memq (car cl-list2) cl-list1) (cl-push (car cl-list2) cl-list1))) (cl-pop cl-list2)) cl-list1))) (defun nunion (cl-list1 cl-list2 &rest cl-keys) "Combine LIST1 and LIST2 using a set-union operation. The result list contains all items that appear in either LIST1 or LIST2. This is a destructive function; it reuses the storage of LIST1 and LIST2 whenever possible. Keywords supported: :test :test-not :key" (cond ((null cl-list1) cl-list2) ((null cl-list2) cl-list1) (t (apply 'union cl-list1 cl-list2 cl-keys)))) (defun intersection (cl-list1 cl-list2 &rest cl-keys) "Combine LIST1 and LIST2 using a set-intersection operation. The result list contains all items that appear in both LIST1 and LIST2. This is a non-destructive function; it makes a copy of the data if necessary to avoid corrupting the original LIST1 and LIST2. Keywords supported: :test :test-not :key" (and cl-list1 cl-list2 (if (equal cl-list1 cl-list2) cl-list1 (cl-parsing-keywords (:key) (:test :test-not) (let ((cl-res nil)) (or (>= (length cl-list1) (length cl-list2)) (setq cl-list1 (prog1 cl-list2 (setq cl-list2 cl-list1)))) (while cl-list2 (if (if (or cl-keys (numberp (car cl-list2))) (apply 'member* (cl-check-key (car cl-list2)) cl-list1 cl-keys) (memq (car cl-list2) cl-list1)) (cl-push (car cl-list2) cl-res)) (cl-pop cl-list2)) cl-res))))) (defun nintersection (cl-list1 cl-list2 &rest cl-keys) "Combine LIST1 and LIST2 using a set-intersection operation. The result list contains all items that appear in both LIST1 and LIST2. This is a destructive function; it reuses the storage of LIST1 and LIST2 whenever possible. Keywords supported: :test :test-not :key" (and cl-list1 cl-list2 (apply 'intersection cl-list1 cl-list2 cl-keys))) (defun set-difference (cl-list1 cl-list2 &rest cl-keys) "Combine LIST1 and LIST2 using a set-difference operation. The result list contains all items that appear in LIST1 but not LIST2. This is a non-destructive function; it makes a copy of the data if necessary to avoid corrupting the original LIST1 and LIST2. Keywords supported: :test :test-not :key" (if (or (null cl-list1) (null cl-list2)) cl-list1 (cl-parsing-keywords (:key) (:test :test-not) (let ((cl-res nil)) (while cl-list1 (or (if (or cl-keys (numberp (car cl-list1))) (apply 'member* (cl-check-key (car cl-list1)) cl-list2 cl-keys) (memq (car cl-list1) cl-list2)) (cl-push (car cl-list1) cl-res)) (cl-pop cl-list1)) cl-res)))) (defun nset-difference (cl-list1 cl-list2 &rest cl-keys) "Combine LIST1 and LIST2 using a set-difference operation. The result list contains all items that appear in LIST1 but not LIST2. This is a destructive function; it reuses the storage of LIST1 and LIST2 whenever possible. Keywords supported: :test :test-not :key" (if (or (null cl-list1) (null cl-list2)) cl-list1 (apply 'set-difference cl-list1 cl-list2 cl-keys))) (defun set-exclusive-or (cl-list1 cl-list2 &rest cl-keys) "Combine LIST1 and LIST2 using a set-exclusive-or operation. The result list contains all items that appear in exactly one of LIST1, LIST2. This is a non-destructive function; it makes a copy of the data if necessary to avoid corrupting the original LIST1 and LIST2. Keywords supported: :test :test-not :key" (cond ((null cl-list1) cl-list2) ((null cl-list2) cl-list1) ((equal cl-list1 cl-list2) nil) (t (append (apply 'set-difference cl-list1 cl-list2 cl-keys) (apply 'set-difference cl-list2 cl-list1 cl-keys))))) (defun nset-exclusive-or (cl-list1 cl-list2 &rest cl-keys) "Combine LIST1 and LIST2 using a set-exclusive-or operation. The result list contains all items that appear in exactly one of LIST1, LIST2. This is a destructive function; it reuses the storage of LIST1 and LIST2 whenever possible. Keywords supported: :test :test-not :key" (cond ((null cl-list1) cl-list2) ((null cl-list2) cl-list1) ((equal cl-list1 cl-list2) nil) (t (nconc (apply 'nset-difference cl-list1 cl-list2 cl-keys) (apply 'nset-difference cl-list2 cl-list1 cl-keys))))) (defun subsetp (cl-list1 cl-list2 &rest cl-keys) "True if LIST1 is a subset of LIST2. I.e., if every element of LIST1 also appears in LIST2. Keywords supported: :test :test-not :key" (cond ((null cl-list1) t) ((null cl-list2) nil) ((equal cl-list1 cl-list2) t) (t (cl-parsing-keywords (:key) (:test :test-not) (while (and cl-list1 (apply 'member* (cl-check-key (car cl-list1)) cl-list2 cl-keys)) (cl-pop cl-list1)) (null cl-list1))))) (defun subst-if (cl-new cl-pred cl-tree &rest cl-keys) "Substitute NEW for elements matching PREDICATE in TREE (non-destructively). Return a copy of TREE with all matching elements replaced by NEW. Keywords supported: :key" (apply 'sublis (list (cons nil cl-new)) cl-tree ':if cl-pred cl-keys)) (defun subst-if-not (cl-new cl-pred cl-tree &rest cl-keys) "Substitute NEW for elts not matching PREDICATE in TREE (non-destructively). Return a copy of TREE with all non-matching elements replaced by NEW. Keywords supported: :key" (apply 'sublis (list (cons nil cl-new)) cl-tree ':if-not cl-pred cl-keys)) (defun nsubst (cl-new cl-old cl-tree &rest cl-keys) "Substitute NEW for OLD everywhere in TREE (destructively). Any element of TREE which is `eql' to OLD is changed to NEW (via a call to `setcar'). Keywords supported: :test :test-not :key" (apply 'nsublis (list (cons cl-old cl-new)) cl-tree cl-keys)) (defun nsubst-if (cl-new cl-pred cl-tree &rest cl-keys) "Substitute NEW for elements matching PREDICATE in TREE (destructively). Any element of TREE which matches is changed to NEW (via a call to `setcar'). Keywords supported: :key" (apply 'nsublis (list (cons nil cl-new)) cl-tree ':if cl-pred cl-keys)) (defun nsubst-if-not (cl-new cl-pred cl-tree &rest cl-keys) "Substitute NEW for elements not matching PREDICATE in TREE (destructively). Any element of TREE which matches is changed to NEW (via a call to `setcar'). Keywords supported: :key" (apply 'nsublis (list (cons nil cl-new)) cl-tree ':if-not cl-pred cl-keys)) (defun sublis (cl-alist cl-tree &rest cl-keys) "Perform substitutions indicated by ALIST in TREE (non-destructively). Return a copy of TREE with all matching elements replaced. Keywords supported: :test :test-not :key" (cl-parsing-keywords (:test :test-not :key :if :if-not) () (cl-sublis-rec cl-tree))) (defvar cl-alist) (defun cl-sublis-rec (cl-tree) ; uses cl-alist/key/test*/if* (let ((cl-temp (cl-check-key cl-tree)) (cl-p cl-alist)) (while (and cl-p (not (cl-check-test-nokey (car (car cl-p)) cl-temp))) (setq cl-p (cdr cl-p))) (if cl-p (cdr (car cl-p)) (if (consp cl-tree) (let ((cl-a (cl-sublis-rec (car cl-tree))) (cl-d (cl-sublis-rec (cdr cl-tree)))) (if (and (eq cl-a (car cl-tree)) (eq cl-d (cdr cl-tree))) cl-tree (cons cl-a cl-d))) cl-tree)))) (defun nsublis (cl-alist cl-tree &rest cl-keys) "Perform substitutions indicated by ALIST in TREE (destructively). Any matching element of TREE is changed via a call to `setcar'. Keywords supported: :test :test-not :key" (cl-parsing-keywords (:test :test-not :key :if :if-not) () (let ((cl-hold (list cl-tree))) (cl-nsublis-rec cl-hold) (car cl-hold)))) (defun cl-nsublis-rec (cl-tree) ; uses cl-alist/temp/p/key/test*/if* (while (consp cl-tree) (let ((cl-temp (cl-check-key (car cl-tree))) (cl-p cl-alist)) (while (and cl-p (not (cl-check-test-nokey (car (car cl-p)) cl-temp))) (setq cl-p (cdr cl-p))) (if cl-p (setcar cl-tree (cdr (car cl-p))) (if (consp (car cl-tree)) (cl-nsublis-rec (car cl-tree)))) (setq cl-temp (cl-check-key (cdr cl-tree)) cl-p cl-alist) (while (and cl-p (not (cl-check-test-nokey (car (car cl-p)) cl-temp))) (setq cl-p (cdr cl-p))) (if cl-p (progn (setcdr cl-tree (cdr (car cl-p))) (setq cl-tree nil)) (setq cl-tree (cdr cl-tree)))))) (defun tree-equal (cl-x cl-y &rest cl-keys) "Return t if trees X and Y have `eql' leaves. Atoms are compared by `eql'; cons cells are compared recursively. Keywords supported: :test :test-not :key" (cl-parsing-keywords (:test :test-not :key) () (cl-tree-equal-rec cl-x cl-y))) (defun cl-tree-equal-rec (cl-x cl-y) (while (and (consp cl-x) (consp cl-y) (cl-tree-equal-rec (car cl-x) (car cl-y))) (setq cl-x (cdr cl-x) cl-y (cdr cl-y))) (and (not (consp cl-x)) (not (consp cl-y)) (cl-check-match cl-x cl-y))) (run-hooks 'cl-seq-load-hook) ;;; cl-seq.el ends here