XEmacs 21.2.42 "Poseidon".
[chise/xemacs-chise.git.1] / man / internals / internals.texi
index 8cc49ad..db888d1 100644 (file)
@@ -8734,8 +8734,8 @@ screen images can be instantiated from a single glyph.
 Glyphs are lazily instantiated by calling one of the glyph
 functions. This usually occurs within redisplay when
 @code{Fglyph_height} is called. Instantiation causes an image-instance
-to be created and cached. This cache is on a device basis for all glyphs
-except glyph-widgets, and on a window basis for glyph widgets.  The
+to be created and cached. This cache is on a per-device basis for all glyphs
+except widget-glyphs, and on a per-window basis for widgets-glyphs.  The
 caching is done by @code{image_instantiate} and is necessary because it
 is generally possible to display an image-instance in multiple
 domains. For instance if we create a Pixmap, we can actually display
@@ -8752,6 +8752,74 @@ cached on an XEmacs window basis.
 Any action on a glyph first consults the cache before actually
 instantiating a widget.
 
+@section Glyph Instantiation
+
+Glyph instantiation is a hairy topic and requires some explanation. The
+guts of glyph instantiation is contained within
+@code{image_instantiate}. A glyph contains an image which is a
+specifier. When a glyph function - for instance @code{Fglyph_height} -
+asks for a property of the glyph that can only be determined from its
+instantiated state, then the glyph image is instantiated and an image
+instance created. The instantiation process is governed by the specifier
+code and goes through a series of steps:
+
+@itemize @bullet
+@item
+Validation. Instantiation of image instances happens dynamically - often
+within the guts of redisplay. Thus it is often not feasible to catch
+instantiator errors at instantiation time. Instead the instantiator is
+validated at the time it is added to the image specifier. This function
+is defined by @code{image_validate} and at a simple level validates
+keyword value pairs.
+@item
+Duplication. The specifier code by default takes a copy of the
+instantiator. This is reasonable for most specifiers but in the case of
+widget-glyphs can be problematic, since some of the properties in the
+instantiator - for instance callbacks - could cause infinite recursion
+in the copying process. Thus the image code defines a function -
+@code{image_copy_instantiator} - which will selectively copy values.
+This is controlled by the way that a keyword is defined either using
+@code{IIFORMAT_VALID_KEYWORD} or
+@code{IIFORMAT_VALID_NONCOPY_KEYWORD}. Note that the image caching and
+redisplay code relies on instantiator copying to ensure that current and
+new instantiators are actually different rather than referring to the
+same thing.
+@item
+Normalization. Once the instantiator has been copied it must be
+converted into a form that is viable at instantiation time. This can
+involve no changes at all, but typically involves things like converting
+file names to the actual data. This function is defined by
+@code{image_going_to_add} and @code{normalize_image_instantiator}.
+@item
+Instantiation. When an image instance is actually required for display
+it is instantiated using @code{image_instantiate}. This involves calling
+instantiate methods that are specific to the type of image being
+instantiated.
+@end itemize
+
+The final instantiation phase also involves a number of steps. In order
+to understand these we need to describe a number of concepts.
+
+An image is instantiated in a @dfn{domain}, where a domain can be any
+one of a device, frame, window or image-instance. The domain gives the
+image-instance context and identity and properties that affect the
+appearance of the image-instance may be different for the same glyph
+instantiated in different domains. An example is the face used to
+display the image-instance.
+
+Although an image is instantiated in a particular domain the
+instantiation domain is not necessarily the domain in which the
+image-instance is cached. For example a pixmap can be instantiated in a
+window be actually be cached on a per-device basis. The domain in which
+the image-instance is actually cached is called the
+@dfn{governing-domain}. A governing-domain is currently either a device
+or a window. Widget-glyphs and text-glyphs have a window as a
+governing-domain, all other image-instances have a device as the
+governing-domain. The governing domain for an image-instance is
+determined using the governing_domain image-instance method.
+
+@section Widget-Glyphs
+
 @section Widget-Glyphs in the MS-Windows Environment
 
 To Do
@@ -8763,6 +8831,24 @@ Library}) for manipulating the native toolkit objects. This is primarily
 so that different toolkits can be supported for widget-glyphs, just as
 they are supported for features such as menubars etc.
 
+Lwlib is extremely poorly documented and quite hairy so here is my
+understanding of what goes on.
+
+Lwlib maintains a set of widget_instances which mirror the hierarchical
+state of Xt widgets. I think this is so that widgets can be updated and
+manipulated generically by the lwlib library. For instance
+update_one_widget_instance can cope with multiple types of widget and
+multiple types of toolkit. Each element in the widget hierarchy is updated
+from its corresponding widget_instance by walking the widget_instance
+tree recursively.
+
+This has desirable properties such as lw_modify_all_widgets which is
+called from @file{glyphs-x.c} and updates all the properties of a widget
+without having to know what the widget is or what toolkit it is from.
+Unfortunately this also has hairy properties such as making the lwlib
+code quite complex. And of course lwlib has to know at some level what
+the widget is and how to set its properties.
+
 @node Specifiers, Menus, Glyphs, Top
 @chapter Specifiers